Science Current Events | Science News |

New technique to improve quality control of lithium-ion batteries

May 10, 2013
WEST LAFAYETTE, Ind. - Researchers have created a new tool to detect flaws in lithium-ion batteries as they are being manufactured, a step toward reducing defects and inconsistencies in the thickness of electrodes that affect battery life and reliability.

The electrodes, called anodes and cathodes, are the building blocks of powerful battery arrays like those used in electric and hybrid vehicles. They are copper on one side and coated with a black compound to store lithium on the other. Lithium ions travel from the anode to the cathode while the battery is being charged and in the reverse direction when discharging energy.

The material expands as lithium ions travel into it, and this expansion and contraction causes mechanical stresses that can eventually damage a battery and reduce its lifetime, said Douglas Adams, Kenninger Professor of Mechanical Engineering and director of the Purdue Center for Systems Integrity.

The coating is a complex mixture of carbon, particulates that store lithium, chemical binders and carbon black. The quality of the electrodes depends on this "battery paint" being applied with uniform composition and thickness.

"A key challenge is to be able to rapidly and accurately sense the quality of the battery paint," said James Caruthers, Reilly Professor of Chemical Engineering and co-inventor of the new sensing technology.

The Purdue researchers have developed a system that uses a flashbulb-like heat source and a thermal camera to read how heat travels through the electrodes. The "flash thermography measurement" takes less than a second and reveals differences in thickness and composition.

"This technique represents a practical quality-control method for lithium-ion batteries," Adams said. "The ultimate aim is to improve the reliability of these batteries."

Findings are detailed in a research paper being presented during the 2013 annual meeting of the Society for Experimental Mechanics, which is June 3-5 in Lombard, Ill. The paper was written by doctoral students Nathan Sharp, Peter O'Regan, Anand David and Mark Suchomel, and Adams and Caruthers.

The method uses a flashing xenon bulb to heat the copper side of the electrode, and an infrared camera reads the heat signature on the black side, producing a thermal image.

The researchers found that the viscous compound is sometimes spread unevenly, producing a wavelike pattern of streaks that could impact performance. Findings show the technology also is able to detect subtle differences in the ratio of carbon black to the polymer binder, which could be useful in quality control.

The technique also has revealed various flaws, such as scratches and air bubbles, as well as contaminants and differences in thickness, factors that could affect battery performance and reliability.

"We showed that we can sense these differences in thickness by looking at the differences in temperature," Adams said. "When there is a thickness difference of 4 percent, we saw a 4.8 percent rise in temperature from one part of the electrode to another. For 10 percent, the temperature was 9.2 percent higher, and for 17 percent it was 19.2 percent higher."

The thermal imaging process is ideal for a manufacturing line because it is fast and accurate and can detect flaws prior to the assembly of the anode and cathodes into a working battery.

"For example, if I see a difference in temperature of more than 1 degree, I can flag that electrode right on the manufacturing floor," Adams said. "The real benefit, we think, is not just finding flaws but also being able to fix them on the spot."

Purdue has applied for a patent on the technique.

Purdue University

Related Lithium-ion Batteries Current Events and Lithium-ion Batteries News Articles

X-ray imaging reveals secrets in battery materials
In a new study, researchers explain why one particular cathode material works well at high voltages, while most other cathodes do not. The insights, published in the 19 June issue of the journal Science, could help battery developers design rechargeable lithium-ion batteries that operate at higher voltages.

X-ray imaging reveals secrets in battery materials
In a new study, researchers explain why one particular cathode material works well at high voltages, while most other cathodes do not.

Key to quick battery charging time
University of Tokyo researchers have discovered the structure and transport properties of the "intermediate state" in lithium-ion batteries - key to understanding the mechanisms of charge and discharge in rechargeable batteries.

Study finds a way to prevent fires in next-generation lithium batteries
In a study that could improve the safety of next-generation batteries, researchers discovered that adding two chemicals to the electrolyte of a lithium metal battery prevents the formation of dendrites - "fingers" of lithium that pierce the barrier between the battery's halves, causing it to short out, overheat and sometimes burst into flame.

Turn that defect upside down
Most people see defects as flaws. A few Michigan Technological University researchers, however, see them as opportunities.

Wearables may get boost from boron-infused graphene
A microsupercapacitor designed by scientists at Rice University that may find its way into personal and even wearable electronics is getting an upgrade. The laser-induced graphene device benefits greatly when boron becomes part of the mix.

Chemistry student in sun harvest breakthrough
The Sun is a huge source of energy. In just one hour planet Earth is hit by so much sunshine that humankind could cover its energy needs for an entire year if only we knew how to harvest and save it.

Tracking exploding lithium-ion batteries in real-time
What happens when lithium-ion batteries overheat and explode has been tracked inside and out for the first time by a UCL-led team using sophisticated 3D imaging.

Better battery imaging paves way for renewable energy future
In a move that could improve the energy storage of everything from portable electronics to electric microgrids, University of Wisconsin-Madison and Brookhaven National Laboratory researchers have developed a novel X-ray imaging technique to visualize and study the electrochemical reactions in lithium-ion rechargeable batteries containing a new type of material, iron fluoride.

X-ray study images structural damage in lithium-ion batteries
Charging lithium-ion batteries too quickly can permanently reduce the battery capacity. Portions of the energy storage structure are thereby destroyed and deactivated.
More Lithium-ion Batteries Current Events and Lithium-ion Batteries News Articles

Lithium-Ion Batteries: Science and Technologies

Lithium-Ion Batteries: Science and Technologies
by Masaki Yoshio (Editor), Ralph J. Brodd (Editor), Akiya Kozawa (Editor)

Here in a single source is an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful as a text for researchers interested in energy conversion for the direct conversion of chemical energy into electrical energy.

Lithium-Ion Batteries: Advances and Applications

Lithium-Ion Batteries: Advances and Applications
by Gianfranco Pistoia (Editor)

Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwide array of professional industries. Contains all applications of consumer and industrial lithium-ion batteries, including reviews, in a single volumeFeatures contributions from the world's leading industry and...

The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology

The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology
by John T Warner (Author)

The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology offers to the reader a clear and concise explanation of how Li-ion batteries are designed from the perspective of a manager, sales person, product manager or entry level engineer who is not already an expert in Li-ion battery design. It will offer a layman’s explanation of the history of vehicle electrification, what the various terminology means, and how to do some simple calculations that can be used in determining basic battery sizing, capacity, voltage and energy. By the end of this book the reader has a solid understanding of all of the terminology around Li-ion batteries and is able to do some simple battery calculations. The book is immensely useful to beginning and experienced engineer...

Lithium-Ion Batteries Hazard and Use Assessment (SpringerBriefs in Fire)

Lithium-Ion Batteries Hazard and Use Assessment (SpringerBriefs in Fire)
by Celina Mikolajczak (Author), Michael Kahn (Author), Kevin White (Author), Richard Thomas Long (Author)

Lithium-Ion Batteries Hazard and Use Assessment examines the usage of lithium-ion batteries and cells within consumer, industrial and transportation products, and analyzes the potential hazards associated with their prolonged use. This book also surveys the applicable codes and standards for lithium-ion technology. Lithium-Ion Batteries Hazard and Use Assessment is designed for practitioners as a reference guide for lithium-ion batteries and cells. Researchers working in a related field will also find the book valuable.

Lithium-Ion Batteries: Fundamentals and Applications (Electrochemical Energy Storage and Conversion)

Lithium-Ion Batteries: Fundamentals and Applications (Electrochemical Energy Storage and Conversion)
by Yuping Wu (Editor)

Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph: Introduces the underlying theory and history of lithium-ion batteries Describes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separators Discusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current collectors, and cases Examines the assembly processes and electrochemical performance of lithium-ion batteries Explores applications in power tools, electric vehicles, aerospace, and more...

The TAB Battery Book: An In-Depth Guide to Construction, Design, and Use

The TAB Battery Book: An In-Depth Guide to Construction, Design, and Use
by Michael Root (Author)

Supercharge your understanding of battery technology Ideal for hobbyists and engineers alike, The TAB Battery Book: An In-Depth Guide to Construction Design and Use offers comprehensive coverage of these portable energy powerhouses. This practical guide discusses battery chemistry and engineering, how batteries are used, and the history of batteries. You'll find out how different types of batteries work and how to select the right battery for any application. The book also examines the technological advances being used to develop batteries as robust energy sources for a wide variety of devices. Tap into the power of all kinds of batteries with help from this detailed resource. Coverage includes: Portable energy and long-term energy storage Batteries for portable consumer demands, medical...

Lithium-Ion Batteries: Solid-Electrolyte Interphase

Lithium-Ion Batteries: Solid-Electrolyte Interphase
by Perla B. Balbuena (Editor), Yixuan Wang (Editor)

This work focuses on the mechanisms of formation of a solid-electrolyte interphase (SEI) on the electrode surfaces of lithium-ion batteries. The SEI film is due to electromechanical reduction of species present in the electrolyte. It is widely recognized that the presence of the film plays an essential role in the battery performance, and its very nature can determine an extended (or shorter) life for the battery. In spite of the numerous related research efforts, details on the stability of the SEI composition and its influence on the battery capacity are still controversial. This book carefully analyzes and discusses the most recent findings and advances on this topic.

Lithium Ion Rechargeable Batteries: Materials, Technology, and New Applications

Lithium Ion Rechargeable Batteries: Materials, Technology, and New Applications
by Kazunori Ozawa (Editor)

Starting out with an introduction to the fundamentals of lithium ion batteries, this book begins by describing in detail the new materials for all four major uses as cathodes, anodes, separators, and electrolytes. It then goes on to address such critical issues as self-discharge and passivation effects, highlighting lithium ion diffusion and its profound effect on a battery's power density, life cycle and safety issues. The monograph concludes with a detailed chapter on lithium ion battery use in hybrid electric vehicles. Invaluable reading for materials scientists, electrochemists, physicists, and those working in the automobile and electrotechnical industries, as well as those working in computer hardware and the semiconductor industry.

Battery Management Systems for Large Lithium Ion Battery Packs

Battery Management Systems for Large Lithium Ion Battery Packs
by Davide Andrea (Author)

A battery management system (BMS) is any electronic device that manages a rechargeable battery pack. The BMS monitors the battery pack's state, calculates secondary data, offers protection, and controls its environment. This timely book provides a solid understanding of battery management systems (BMS) in large Li-Ion battery packs, describing the important technical challenges in this field and exploring the most effective solutions. Professionals find in-depth discussions on BMS topologies, functions, and complexities, helping them determine which permutation is right for their application. Packed with numerous graphics, tables, and images, the book explains the 'whys' and 'hows' of Li-Ion BMS design, installation, configuration and troubleshooting. This hands-on resource includes an...

Nanomaterials for Lithium-Ion Batteries: Fundamentals and Applications

Nanomaterials for Lithium-Ion Batteries: Fundamentals and Applications
by Rachid Yazami (Editor)

This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in development. They include nanostructured anode materials based on Si, Ge, Sn, and other metals and metal oxides together with cathode materials of olivine, the hexagonal and spinel crystal structures.

© 2015