Science Current Events | Science News | Brightsurf.com
 

Bacterial fibers critical to human and avian infection

February 06, 2014
Escherichia coli-a friendly and ubiquitous bacterial resident in the guts of humans and other animals-may occasionally colonize regions outside the intestines. There, it can have serious consequences for health, some of them, lethal.

In a new study conducted in Assistant Professor Melha Mellata's lab, at the Biodesign Institute at Arizona State University, lead author Alyssa K. Stacy and her colleagues examine one such bacterial adversary, Avian pathogenic Escherichia coli (APEC).

The research, conducted in collaboration with scientists at the University of Florida, Gainesville, appears in the current issue of the journal PLOS ONE.

The researchers targeted a specific group of threadlike fibers known as E. coli common pilus (ECP), which adorn bacterial cell surfaces. In the first study of its kind, they analyzed the way these structures contribute to APEC's ability to cause infection and form dense cell aggregates known as biofilms.

APEC infections are a serious threat to poultry, causing both systemic and localized infections, collectively known as colibacillosis. These afflictions cause significant economic losses to the poultry industry, due to the costs of treatment for infected birds, lowered rates of egg production, and mortality.

Further, APEC infections may pose a risk to humans, due to their zoonotic potential-their ability to infect human hosts. A better understanding of infectious capacity (or virulence) and zoonotic potential are therefore essential for combatting these hazardous pathogens.

Stacy was an undergraduate student in Dr. Mellata's lab, and was partialy supported by funding from School of Life Sciences Undergraduate Research (SOLUR), ASU. She was joined by Biodesign researchers Natalie M. Mitchell, Jacob T. Maddux, and Roy Curtiss III (who directs the Institute's Center for Infectious Diseases and Vaccinology).

Avian Pathogenic E. coli (APEC) belong to a broad group of extraintestinal pathogenic E. coli (ExPEC) strains. Colibacillosis, caused by APEC in birds, leads to serious illness, often attacking the avian respiratory system, producing systemic or localized infections depending on the age and gender of bird, immunologic health and various environmental factors.

Because APEC and human ExPEC forms share important virulence characteristics, possible zoonotic transmission is a serious health concern. APEC may also provide a reservoir for virulence genes that may be acquired by human strains.

Many types of bacteria produce extracellular surface fibers like ECP, enabling them to adhere to one another as well as to various surfaces. But such fibers or pili perform other vital functions, particularly in the case of pathogenic bacteria. Pili, including those projecting from the surfaces of E. coli, are capable of recognizing specific host cell receptors during their initial phase of colonization.

Bacteria make further use of their pili to form cellular biofilms. Such bacterial aggregates are of clinical importance, as they provide reservoirs for pathogenic organisms to persist in the host and often display increased resistance to antibiotics.

E. coli common pilus (ECP) was originally identified in an ExPEC form known to cause neonatal meningitis in humans, but was later recognized as a component in all classes of E. coli-both pathogenic and benign.

While E. coli bacteria exist primarily as beneficial residents of the human intestine, extraintestinal variants are responsible for diarrheal diseases like hemorrhagic colitis, as well as urinary tract infections, neonatal meningitis, sepsis, and pneumonia. The toll of such diseases-particularly in the developing world-is substantial, claiming some 2.5 million lives per year. Most of these victims are children.

The current study draws on examinations of ECP both in vitro and in vivo. The aim was to determine the prevalence of ECP among APEC strains and evaluate its contribution in the early stage of biofilm formation and host cell recognition. Additionally, the study assessed ECP's role in virulence in baby chicks.

The new research demonstrates-for the first time-the prevalence of ecpA, a gene coding for a major structural subunit of ECP in a majority APEC sequences examined. (The complex architecture of ECP fibers is composed of 6 distinct structural subunits.) With the aid of PCR methods, the group tested 167 APEC strains derived from chickens and turkeys afflicted with colibacillosis, 76 percent of which tested positive for ecpA, which was previousely associated with human pathogenic E. coli.

The authors stress that the results confirm that APEC and human pathogenic E. coli strains share virulence traits. They further speculate that ecpA may permit the persistence of E. coli bacteria in the intestine, where they exist in a non-threatening state, before migrating to alternate, extraintestinal sites, becoming pathogenic.

Environmental conditions, including low pH, low growth temperature and high acetate concentration have been shown to upregulate the expression of ECP in human E. coli strains that cause urinary tract infections, meningitis, and diarrheal diseases. In the current study, an APEC strain was found to adhere to human cervical cells in a manner similar to human ExPEC infections. Further, the results showed that adorning APEC with anti-ECP antibodies- a process known as opsonization-could significantly inhibit bacterial adherence. This finding suggests that ECP could be considered as a potential antigen for vaccines for both human and poultry infections.

The formation of biofilms is a common bacterial property, including in E. coli, where the adaptation increases survivability inside and outside of the host and provides an ideal environment for the exchange of genetic material. Bacteria forming biofilms frequently display antibiotic resistance and can be tenacious foes to combat medically. Deletion of ECP-related genes was shown to reduce biofilm production.

Finally, the study attempted to evaluate APEC virulence in baby chicks, using strains with deleted ECP genes. Results show a reduction in virulence. In fact, the potential for colonization among the ECP deletion strains was reduced, particularly in the bloodstream.

The new work demonstrates multiple roles for ECP in APEC, and thus presents a plausible target for future therapeutics aimed at these serious infections of both humans and animals.

"Our study has clearly shown that although the gene of ECP was found in a large number of APEC, these bacteria express this gene differently when they are in contact with cells or in biofilm," Mellata says. "Elucidating how the expression of some genes is turned on or off by different factors will help us understand how these bacteria cause disease."

Arizona State University


Related Escherichia Coli Current Events and Escherichia Coli News Articles


Fresh milk keeps infections at bay
A study by LMU researchers shows that infants fed on fresh rather than UHT cow's milk are less prone to infection. The authors recommend the use of alternative processing methods to preserve the protectants found in the natural product.

Researchers look to exploit females' natural resistance to infection
Researchers have linked increased resistance to bacterial pneumonia in female mice to an enzyme activated by the female sex hormone estrogen.

E. coli outbreak at hospital associated with contaminated specialized GI endoscopes
Despite no lapses in the disinfection process recommended by the manufacturer being identified, specialized gastrointestinal endoscopes called duodenoscopes had bacterial contamination associated with an outbreak of a highly resistant strain of E coli at a hospital in Illinois.

Anorexia/bulimia: A bacterial protein implicated
Eating disorders (ED) such as anorexia nervosa, bulimia, and binge eating disorder affect approximately 5-10% of the general population, but the biological mechanisms involved are unknown.

And so they beat on, flagella against the cantilever
A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate to communication within a bacterial colony.

Collaboration drives achievement in protein structure research
When this week's print issue of the journal Science comes out, a collective cheer will go up from New Mexico, Montana and even the Netherlands, thanks to the type of collaborative effort that is more and more the norm in these connected times.

Bacteria manipulate salt to build shelters to hibernate
For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, bacteria manipulate the sodium chloride crystallisation to create biomineralogical biosaline 3D morphologically complex formations, where they hibernate.

Preventing foodborne illness, naturally -- with cinnamon
Seeking ways to prevent some of the most serious foodborne illnesses caused by pathogenic bacteria, two Washington State University scientists have found promise in an ancient but common cooking spice: cinnamon.

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload
Bacterial infections usually announce themselves with pain and fever but often can be defeated with antibiotics - and then there are those that are sneaky and hard to beat.

Researchers create better methods to detect E. coli
Kansas State University diagnosticians are helping the cattle industry save millions of dollars each year by developing earlier and accurate detection of E. coli.
More Escherichia Coli Current Events and Escherichia Coli News Articles

Escherichia coli and Salmonella: Cellular and Molecular Biology (2 Volumes)

Escherichia coli and Salmonella: Cellular and Molecular Biology (2 Volumes)
by Frederick C. Neidhardt (Editor)


This is the long-awaited second edition of an invaluable classic! Escherichia coli occupies a central role in contemporary molecular biology. It is the unicellular organism about which most is known - all molecular and cellular biologists will want a copy of this book. In 154 chapters, 250 expert authors and editors present the state of the art. Completely rewritten and restructured, the second edition offers a whole new approach to the subject.

Pathogenic Escherichia coli: Molecular and Cellular Microbiology

Pathogenic Escherichia coli: Molecular and Cellular Microbiology
by Stefano Morabito (Editor)


In recent years, a great deal of knowledge has accumulated on the features associated with the virulence of pathogenic E. coli. A large number of virulence genes have been identified and their products characterized. Great strides have been made in the understanding of the pathogenic mechanisms and the bacterium-host interaction. However, much remains elusive in the understanding of pathogenicity at a cellular and sub-cellular level. This is largely due to E. coli genome's plasticity: it generates great variability and facilitates the rapid emergence of new pathogenic variants. Elucidating the mechanisms underlying the evolution of these pathogens and their interactions with the host are key stages for disease prevention. This book reviews the most important recent findings of the studies...

Escherichia Coli and Salmonella Typhimurium: Vols 1-2: Cellular and Molecular Biology

Escherichia Coli and Salmonella Typhimurium: Vols 1-2: Cellular and Molecular Biology
by Frederick C. Neidhardt (Editor), etc. (Editor), et al (Editor)


Book by

Escherichia coli, Second Edition: Pathotypes and Principles of Pathogenesis

Escherichia coli, Second Edition: Pathotypes and Principles of Pathogenesis
by Michael Donnenberg (Editor)


The 2e of Escherichia coli is a unique, comprehensive analysis of the biology and molecular mechanisms that enable this ubiquitous organism to thrive. Leading investigators in the field discuss the molecular basis of E. coli pathogenesis followed by chapters on genomics and evolution. Detailed descriptions of distinct strains reveal the molecular pathogenesis of each and the causes of intestinal and extra-intestinal infections in humans. This work concludes with a presentation of virulence factors common to two or more pathotypes. The book is a great resource for references and up-to-date knowledge for anyone who studies E. coli pathogenesis, either as established investigators or investigators new to the field. It is also an excellent text for those who teach mechanisms of pathogenesis...

Escherichia coli: Virulence Mechanisms of a Versatile Pathogen

Escherichia coli: Virulence Mechanisms of a Versatile Pathogen
by Michael S. Donnenberg (Editor)


Escherichia coli: Virulence Mechanisms of a Versatile Pathogen is a unique, comprehensive analysis of the biology and molecular mechanisms that enable this ubiquitous organism to thrive. Leading investigators in the field discuss the molecular basis of E. coli pathogenesis followed by chapters on genomics and evolution. Detailed descriptions of distinct strains reveal the molecular pathogenesis of each and the causes of intestinal and extra-intestinal infections in humans. Escherichia coli: Virulence Mechanisms of a Versatile Pathogen concludes with a presentation of virulence factors, common to two or more pathotypes. This unique collection presents timely and vital information on understanding the inner workings of E. coli, which will lend key insights into disease prevention research.

Fed-Batch Fermentation: A Practical Guide to Scalable Recombinant Protein Production in Escherichia Coli (Woodhead Publishing Series in Biomedicine)

Fed-Batch Fermentation: A Practical Guide to Scalable Recombinant Protein Production in Escherichia Coli (Woodhead Publishing Series in Biomedicine)
by G G Moulton (Author)


Fed-batch Fermentation is primarily a practical guide for recombinant protein production in E. coli using a Fed-batch Fermentation process. Ideal users of this guide are teaching labs and R&D labs that need a quick and reproducible process for recombinant protein production. It may also be used as a template for the production of recombinant protein product for use in clinical trials. The guide highlights a method whereby a medium cell density - final Ods = 30-40 (A600) - Fed-batch Fermentation process can be accomplished within a single day with minimal supervision. This process can also be done on a small (2L) scale that is scalable to 30L or more. All reagents (media, carbon source, plasmid vector and host cell) used are widely available and are relatively inexpensive. This method has...

Systems Biology and Biotechnology of Escherichia coli

Systems Biology and Biotechnology of Escherichia coli
by Sang Yup Lee (Editor)


Systems biology is changing the way biological systems are studied by allowing us to examine the cell and organism as a whole. Systems biotechnology allows optimal design and development of upstream to downstream bioprocesses by taking a systems-approach. E. coli has been a model organism for almost all biological and biotechnological studies. This book brings together for the first time the state-of-the-art reviews by the world-leading experts on systems biology and biotechnological applications of E. coli. The topics covered include genomics and functional genomics, resources for systems biology, network analysis, genome-scale metabolic reconstruction, modelling and simulation, dynamic modelling and simulation, systems-level analysis of evolution, plasmids and expression systems,...

Escherichia coli infections

Escherichia coli infections
by Viroj Wiwanitkit (Author)


The “E. coli” may be a new vocabulary that many people would be unfamiliar to them. This word is the name of the disease that is a major problem and concern in global health that still presents as outbreaks in many countries, especially those in Europe. E. coli infection is a bacterial disease caused by a pathogenic bacterium namely Escherichia coli.

Poisoned: The True Story of the Deadly E. Coli Outbreak That Changed the Way Americans Eat

Poisoned: The True Story of the Deadly E. Coli Outbreak That Changed the Way Americans Eat
by Jeff Benedict (Author)


"Your perfect beach book has arrived. With Poisoned, Jeff Benedict manages to deliver the full literary experience of a medico-legal thriller in a work of nonfiction that, fortuitously enough, could not be more relevant to recent headlines."—The New York TimesIn this riveting work of narrative nonfiction, award-winning journalist and best-selling author Jeff Benedict chronicles the events surrounding the biggest food-poisoning epidemic in US history and how this unprecedented crisis sparked public awareness about unsanitary practices in the fast food industry. Poisoned draws on access to confidential documents and exclusive interviews with the real-life characters at the center of the drama.Jeff Benedict is considered one of America's top nonfiction writers. He is the author of nine...

Escherichia coli O157 in Farm Animals

Escherichia coli O157 in Farm Animals
by Colin S Stewart (Author)


This book identifies research priorities and possible changes in farming practice to reduce the incidence of transmission of the potentially lethal bacterium E. coli O157 to the food chain and humans. Topics include the factors affecting the influence and survival in farm animals, especially cattle; the epidemiology of spread from animals to humans; and the immediate spread from animals to meat, milk and the environment. Supplementary information on the association of human disease with the farm environment has been added. The book results from a meeting on E. coliin farm animals held at the Rowett Research Institute in 1998.

© 2014 BrightSurf.com