Science Current Events | Science News | Brightsurf.com
 

Bacterial fibers critical to human and avian infection

February 06, 2014
Escherichia coli-a friendly and ubiquitous bacterial resident in the guts of humans and other animals-may occasionally colonize regions outside the intestines. There, it can have serious consequences for health, some of them, lethal.

In a new study conducted in Assistant Professor Melha Mellata's lab, at the Biodesign Institute at Arizona State University, lead author Alyssa K. Stacy and her colleagues examine one such bacterial adversary, Avian pathogenic Escherichia coli (APEC).

The research, conducted in collaboration with scientists at the University of Florida, Gainesville, appears in the current issue of the journal PLOS ONE.

The researchers targeted a specific group of threadlike fibers known as E. coli common pilus (ECP), which adorn bacterial cell surfaces. In the first study of its kind, they analyzed the way these structures contribute to APEC's ability to cause infection and form dense cell aggregates known as biofilms.

APEC infections are a serious threat to poultry, causing both systemic and localized infections, collectively known as colibacillosis. These afflictions cause significant economic losses to the poultry industry, due to the costs of treatment for infected birds, lowered rates of egg production, and mortality.

Further, APEC infections may pose a risk to humans, due to their zoonotic potential-their ability to infect human hosts. A better understanding of infectious capacity (or virulence) and zoonotic potential are therefore essential for combatting these hazardous pathogens.

Stacy was an undergraduate student in Dr. Mellata's lab, and was partialy supported by funding from School of Life Sciences Undergraduate Research (SOLUR), ASU. She was joined by Biodesign researchers Natalie M. Mitchell, Jacob T. Maddux, and Roy Curtiss III (who directs the Institute's Center for Infectious Diseases and Vaccinology).

Avian Pathogenic E. coli (APEC) belong to a broad group of extraintestinal pathogenic E. coli (ExPEC) strains. Colibacillosis, caused by APEC in birds, leads to serious illness, often attacking the avian respiratory system, producing systemic or localized infections depending on the age and gender of bird, immunologic health and various environmental factors.

Because APEC and human ExPEC forms share important virulence characteristics, possible zoonotic transmission is a serious health concern. APEC may also provide a reservoir for virulence genes that may be acquired by human strains.

Many types of bacteria produce extracellular surface fibers like ECP, enabling them to adhere to one another as well as to various surfaces. But such fibers or pili perform other vital functions, particularly in the case of pathogenic bacteria. Pili, including those projecting from the surfaces of E. coli, are capable of recognizing specific host cell receptors during their initial phase of colonization.

Bacteria make further use of their pili to form cellular biofilms. Such bacterial aggregates are of clinical importance, as they provide reservoirs for pathogenic organisms to persist in the host and often display increased resistance to antibiotics.

E. coli common pilus (ECP) was originally identified in an ExPEC form known to cause neonatal meningitis in humans, but was later recognized as a component in all classes of E. coli-both pathogenic and benign.

While E. coli bacteria exist primarily as beneficial residents of the human intestine, extraintestinal variants are responsible for diarrheal diseases like hemorrhagic colitis, as well as urinary tract infections, neonatal meningitis, sepsis, and pneumonia. The toll of such diseases-particularly in the developing world-is substantial, claiming some 2.5 million lives per year. Most of these victims are children.

The current study draws on examinations of ECP both in vitro and in vivo. The aim was to determine the prevalence of ECP among APEC strains and evaluate its contribution in the early stage of biofilm formation and host cell recognition. Additionally, the study assessed ECP's role in virulence in baby chicks.

The new research demonstrates-for the first time-the prevalence of ecpA, a gene coding for a major structural subunit of ECP in a majority APEC sequences examined. (The complex architecture of ECP fibers is composed of 6 distinct structural subunits.) With the aid of PCR methods, the group tested 167 APEC strains derived from chickens and turkeys afflicted with colibacillosis, 76 percent of which tested positive for ecpA, which was previousely associated with human pathogenic E. coli.

The authors stress that the results confirm that APEC and human pathogenic E. coli strains share virulence traits. They further speculate that ecpA may permit the persistence of E. coli bacteria in the intestine, where they exist in a non-threatening state, before migrating to alternate, extraintestinal sites, becoming pathogenic.

Environmental conditions, including low pH, low growth temperature and high acetate concentration have been shown to upregulate the expression of ECP in human E. coli strains that cause urinary tract infections, meningitis, and diarrheal diseases. In the current study, an APEC strain was found to adhere to human cervical cells in a manner similar to human ExPEC infections. Further, the results showed that adorning APEC with anti-ECP antibodies- a process known as opsonization-could significantly inhibit bacterial adherence. This finding suggests that ECP could be considered as a potential antigen for vaccines for both human and poultry infections.

The formation of biofilms is a common bacterial property, including in E. coli, where the adaptation increases survivability inside and outside of the host and provides an ideal environment for the exchange of genetic material. Bacteria forming biofilms frequently display antibiotic resistance and can be tenacious foes to combat medically. Deletion of ECP-related genes was shown to reduce biofilm production.

Finally, the study attempted to evaluate APEC virulence in baby chicks, using strains with deleted ECP genes. Results show a reduction in virulence. In fact, the potential for colonization among the ECP deletion strains was reduced, particularly in the bloodstream.

The new work demonstrates multiple roles for ECP in APEC, and thus presents a plausible target for future therapeutics aimed at these serious infections of both humans and animals.

"Our study has clearly shown that although the gene of ECP was found in a large number of APEC, these bacteria express this gene differently when they are in contact with cells or in biofilm," Mellata says. "Elucidating how the expression of some genes is turned on or off by different factors will help us understand how these bacteria cause disease."

Arizona State University


Related Escherichia Coli Current Events and Escherichia Coli News Articles


Enterotoxigenic E. coli worldwide are closely related
The strains of enterotoxigenic Escherichia coli (ETEC) that infect adults and children in Asia, Africa, and the Americas, have notably similar toxins and virulence factors, according to research published ahead of print in the Journal of Bacteriology.

Mapping the spread of diarrhoea bacteria a major step towards new vaccine
Every year hundreds of thousands of people die from diarrhoeal diseases caused by ETEC bacteria. A study published in Nature Genetics describes how Swedish researchers have mapped the spread of strains of ETEC bacteria around the world.

Thousands of never-before-seen human genome variations uncovered
Thousands of never-before-seen genetic variants in the human genome have been uncovered using a new genome sequencing technology. These discoveries close many human genome mapping gaps that have long resisted sequencing.

Engineered for tolerance, bacteria pump out higher quantity of renewable gasoline
An international team of bioengineers has boosted the ability of bacteria to produce isopentenol, a compound with desirable gasoline properties. The finding, published in mBio®, the online open-access journal of the American Society for Microbiology, is a significant step toward developing a bacterial strain that can yield industrial quantities of renewable bio-gasoline.

Boosting Biogasoline Production in Microbes
In the on-going effort to develop advanced biofuels as a clean, green and sustainable source of liquid transportation fuels, researchers at the U.S. Department of Energy (DOE)'s Joint BioEnergy Institute (JBEI) have identified microbial genes that can improve both the tolerance and the production of biogasoline in engineered strains of Escherichia coli.

Clinical results indicate vaccine candidate highly efficacious against bacterial diarrhea
New results from a safety and immunogenicity study, which included a challenge phase to test efficacy, indicate that a live attenuated enterotoxigenic Escherichia coli (ETEC) vaccine candidate, given in combination with a novel adjuvant, provided significant protection against disease.

Fresh milk keeps infections at bay
A study by LMU researchers shows that infants fed on fresh rather than UHT cow's milk are less prone to infection. The authors recommend the use of alternative processing methods to preserve the protectants found in the natural product.

Researchers look to exploit females' natural resistance to infection
Researchers have linked increased resistance to bacterial pneumonia in female mice to an enzyme activated by the female sex hormone estrogen.

E. coli outbreak at hospital associated with contaminated specialized GI endoscopes
Despite no lapses in the disinfection process recommended by the manufacturer being identified, specialized gastrointestinal endoscopes called duodenoscopes had bacterial contamination associated with an outbreak of a highly resistant strain of E coli at a hospital in Illinois.

Anorexia/bulimia: A bacterial protein implicated
Eating disorders (ED) such as anorexia nervosa, bulimia, and binge eating disorder affect approximately 5-10% of the general population, but the biological mechanisms involved are unknown.
More Escherichia Coli Current Events and Escherichia Coli News Articles

Escherichia coli and Salmonella: Cellular and Molecular Biology (2 Volumes)

Escherichia coli and Salmonella: Cellular and Molecular Biology (2 Volumes)
by Frederick C. Neidhardt (Editor)


This is the long-awaited second edition of an invaluable classic! Escherichia coli occupies a central role in contemporary molecular biology. It is the unicellular organism about which most is known - all molecular and cellular biologists will want a copy of this book. In 154 chapters, 250 expert authors and editors present the state of the art. Completely rewritten and restructured, the second edition offers a whole new approach to the subject.

Escherichia coli, Second Edition: Pathotypes and Principles of Pathogenesis

Escherichia coli, Second Edition: Pathotypes and Principles of Pathogenesis
by Michael Donnenberg (Editor)


The 2e of Escherichia coli is a unique, comprehensive analysis of the biology and molecular mechanisms that enable this ubiquitous organism to thrive. Leading investigators in the field discuss the molecular basis of E. coli pathogenesis followed by chapters on genomics and evolution. Detailed descriptions of distinct strains reveal the molecular pathogenesis of each and the causes of intestinal and extra-intestinal infections in humans. This work concludes with a presentation of virulence factors common to two or more pathotypes. The book is a great resource for references and up-to-date knowledge for anyone who studies E. coli pathogenesis, either as established investigators or investigators new to the field. It is also an excellent text for those who teach mechanisms of pathogenesis...

Pathogenic Escherichia coli: Molecular and Cellular Microbiology

Pathogenic Escherichia coli: Molecular and Cellular Microbiology
by Stefano Morabito (Editor)


In recent years, a great deal of knowledge has accumulated on the features associated with the virulence of pathogenic E. coli. A large number of virulence genes have been identified and their products characterized. Great strides have been made in the understanding of the pathogenic mechanisms and the bacterium-host interaction. However, much remains elusive in the understanding of pathogenicity at a cellular and sub-cellular level. This is largely due to E. coli genome's plasticity: it generates great variability and facilitates the rapid emergence of new pathogenic variants. Elucidating the mechanisms underlying the evolution of these pathogens and their interactions with the host are key stages for disease prevention. This book reviews the most important recent findings of the studies...

Escherichia coli infections

Escherichia coli infections
by Viroj Wiwanitkit (Author)


The “E. coli” may be a new vocabulary that many people would be unfamiliar to them. This word is the name of the disease that is a major problem and concern in global health that still presents as outbreaks in many countries, especially those in Europe. E. coli infection is a bacterial disease caused by a pathogenic bacterium namely Escherichia coli.

Escherichia Coli and Salmonella Typhimurium: Vols 1-2: Cellular and Molecular Biology

Escherichia Coli and Salmonella Typhimurium: Vols 1-2: Cellular and Molecular Biology
by Frederick C. Neidhardt (Editor), etc. (Editor), et al (Editor)


Book by

Systems Biology and Biotechnology of Escherichia coli

Systems Biology and Biotechnology of Escherichia coli
by Sang Yup Lee (Editor)


Systems biology is changing the way biological systems are studied by allowing us to examine the cell and organism as a whole. Systems biotechnology allows optimal design and development of upstream to downstream bioprocesses by taking a systems-approach. E. coli has been a model organism for almost all biological and biotechnological studies. This book brings together for the first time the state-of-the-art reviews by the world-leading experts on systems biology and biotechnological applications of E. coli. The topics covered include genomics and functional genomics, resources for systems biology, network analysis, genome-scale metabolic reconstruction, modelling and simulation, dynamic modelling and simulation, systems-level analysis of evolution, plasmids and expression systems,...

  Cerebral Palsy Linked to Placental E. coli, GBS.(Escherichia coli, group B streptococcus): An article from: Pediatric News
by Kathryn Demott (Author)


This digital document is an article from Pediatric News, published by International Medical News Group on October 1, 2001. The length of the article is 645 words. The page length shown above is based on a typical 300-word page. The article is delivered in HTML format and is available in your Amazon.com Digital Locker immediately after purchase. You can view it with any web browser.

Citation Details
Title: Cerebral Palsy Linked to Placental E. coli, GBS.(Escherichia coli, group B streptococcus)
Author: Kathryn Demott
Publication: Pediatric News (Magazine/Journal)
Date: October 1, 2001
Publisher: International Medical News Group
Volume: 35 Issue: 10 Page: 27

Distributed by Thomson...

Egg Yolk Immunoglobulins(IgY)and Ovotransferrin of Chicken Egg: Simple Purificaiton of IgY and Ovotransferrin and Antimicrobial Activity of ... Escherichia coli O157:H7 and L. monocytogenes

Egg Yolk Immunoglobulins(IgY)and Ovotransferrin of Chicken Egg: Simple Purificaiton of IgY and Ovotransferrin and Antimicrobial Activity of ... Escherichia coli O157:H7 and L. monocytogenes
by Kyung Yuk Ko (Author)


The protocol developed for IgY purification indicated approximately 74% recovery rate and 80% purity, while that of ovotransferrin appeared to be around 93% recovery rate and 80% purity. These protocols seem to be economical and practical for a large-scale purification of IgY and ovotransferrin from chicken egg because ethanol and resin used in the protocols can be regenerated as well as they are simple and rapid methods. The combination of 100 mM-NaHCO3 to ovotransferrin was found to be bacteriostatic against E. coli O157:H7 and L. monocytogenes in BHI broth. Also ovotransferrin solution added with 0.5% citric acid or Zn-bound ovotransferrin inhibited the growth E. coli O157:H7 and L. monocytogenes in BHI broth respectively. Also, EDTA and lysozyme promoted antibacterial activity of...

Escherichia Coli Infections (Deadly Diseases and Epidemics)

Escherichia Coli Infections (Deadly Diseases and Epidemics)
by Shannon D. Manning (Author), Hilary, M.D. Babcock (Editor), David Heymann (Editor)


Escherichia coli bacteria cause many illnesses of the gastrointestinal tract. Often, people come down with these diseases when they eat contaminated foods, especially ground beef or raw produce. Though E. coli infections are most common in less developed parts of the world, they are also a problem in the United States-contamination occurred in prepackaged cookie dough in 2009 and in spinach in 2006. But all E. coli are not harmful, as strains found in the human intestinal system can help with vitamin K production or in fighting harmful bacteria. This revised edition of Escherichia coli Infections contains up-to-date information on the different strains of E. coli, including the latest outbreaks, statistics, diagnostic breakthroughs, and vaccine development.

Escherichia  coli strains associated with calf diarrhoea

Escherichia coli strains associated with calf diarrhoea
by Deepak Sharma (Author), S.S. Soni (Author)


Present investigation was undertaken to study the seroprevalence, colicin production, identification and characterization of fimbrial antigens of E.coli associated with calf diarrhoea. During the course of study, a total of 146 faecal samples were obtained from diarrhoeic calves of different age groups from various dairy farms of Bikaner and processed for the isolation and characterization of E.coli.

© 2014 BrightSurf.com