Nanoparticle drug-delivery system developed to treat brain disorders

January 01, 2021

In the past few decades, researchers have identified biological pathways leading to neurodegenerative diseases and developed promising molecular agents to target them. However, the translation of these findings into clinically approved treatments has progressed at a much slower rate, in part because of the challenges scientists face in delivering therapeutics across the blood-brain barrier (BBB) and into the brain. To facilitate successful delivery of therapeutic agents to the brain, a team of bioengineers, physicians, and collaborators at Brigham and Women's Hospital and Boston Children's Hospital created a nanoparticle platform, which can facilitate therapeutically effective delivery of encapsulated agents in mice with a physically breached or intact BBB. In a mouse model of traumatic brain injury (TBI), they observed that the delivery system showed three times more accumulation in brain than conventional methods of delivery and was therapeutically effective as well, which could open possibilities for the treatment of numerous neurological disorders. Findings were published in Science Advances.

Previously developed approaches for delivering therapeutics into the brain after TBI rely on the short window of time after a physical injury to the head, when the BBB is temporarily breached. However, after the BBB is repaired within a few weeks, physicians lack tools for effective drug delivery.

"It's very difficult to get both small and large molecule therapeutic agents delivered across the BBB," said corresponding author Nitin Joshi, PhD, an associate bioengineer at the Center for Nanomedicine in the Brigham's Department of Anesthesiology, Perioperative and Pain Medicine. "Our solution was to encapsulate therapeutic agents into biocompatible nanoparticles with precisely engineered surface properties that would enable their therapeutically effective transport into the brain, independent of the state of the BBB."

The technology could enable physicians to treat secondary injuries associated with TBI that can lead to Alzheimer's, Parkinson's, and other neurodegenerative diseases, which can develop during ensuing months and years once the BBB has healed.

"To be able to deliver agents across the BBB in the absence of inflammation has been somewhat of a holy grail in the field," said co-senior author Jeff Karp, PhD, of the Brigham's Department of Anesthesiology, Perioperative and Pain Medicine. "Our radically simple approach is applicable to many neurological disorders where delivery of therapeutic agents to the brain is desired."

Rebekah Mannix, MD, MPH, of the Division of Emergency Medicine at Boston Children's Hospital and a co-senior author on the study, further emphasized that the BBB inhibits delivery of therapeutic agents to the central nervous system (CNS) for a wide range of acute and chronic diseases. "The technology developed for this publication could allow for the delivery of large number of diverse drugs, including antibiotics, antineoplastic agents, and neuropeptides," she said. "This could be a game changer for many diseases that manifest in the CNS."

The therapeutic used in this study was a small interfering RNA (siRNA) molecule designed to inhibit the expression of the tau protein, which is believed to play a key role in neurodegeneration. Poly(lactic-co-glycolic acid), or PLGA, a biodegradable and biocompatible polymer used in several existing products approved by the U.S. Food and Drug Administration, was used as the base material for nanoparticles. The researchers systematically engineered and studied the surface properties of the nanoparticles to maximize their penetration across the intact, undamaged BBB in healthy mice. This led to the identification of a unique nanoparticle design that maximized the transport of the encapsulated siRNA across the intact BBB and significantly improved the uptake by brain cells.

A 50 percent reduction in the expression of tau was observed in TBI mice who received anti-tau siRNA through the novel delivery system, irrespective of the formulation being infused within or outside the temporary window of breached BBB. In contrast, tau was not affected in mice that received the siRNA through a conventional delivery system.

"In addition to demonstrating the utility of this novel platform for drug delivery into the brain, this report establishes for the first time that systematic modulation of surface chemistry and coating density can be leveraged to tune the penetration of nanoparticles across biological barriers with tight junction," said first author Wen Li, PhD, of the Department of Anesthesiology, Perioperative and Pain Medicine.

In addition to targeting tau, the researchers have studies underway to attack alternative targets using the novel delivery platform.

"For clinical translation, we want to look beyond tau to validate that our system is amenable to other targets," Karp said. "We used the TBI model to explore and develop this technology, but essentially anyone studying a neurological disorder might find this work of benefit. We certainly have our work cut out, but I think this provides significant momentum for us to advance toward multiple therapeutic targets and be in the position to move ahead to human testing."
-end-
This work was supported by the National Institutes of Health (HL095722), Fundac?a?o para a Cie?ncia e a Tecnologia through MIT-Portugal (TB/ECE/0013/2013), and the Football Players Health Study at Harvard, funded by a grant from the National Football League Players Association. Karp has been a paid consultant and or equity holder for multiple biotechnology companies (listed here). Joshi, Karp, Mannix, Li, Qiu and Langer have one unpublished patent based on the nanoparticle work presented in this manuscript.

Paper cited: Li, W et al. "BBB pathophysiology independent delivery of siRNA in traumatic brain injury" Science Advances DOI: 10.1126/sciadv.abd6889

Brigham and Women's Hospital

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.