Nav: Home

A new direction in ophthalmic development: Nanoparticle drug delivery systems

January 02, 2017

Most ophthalmic diseases are usually treated with topically administered drug formulations (e.g. eye drops). Their main disadvantage is the short time of contact with the eye, which leads to a low degree of absorption of the active substance (less than 5% of the drug administered). This requires frequent instillation, which usually leads to a high systemic exposure. ?he eye as an anatomical structure is an extremely protected organ. In this regard, providing an optimal bioavailability in the eye tissues, resulting in the desired therapeutic effect represents a major challenge.

The purpose of this review is to indicate how nano- and microcarriers of drug substances can solve the problems with the drug delivery in the ocular tissues, to indicate the possible hazards and side effects, depending on the polymer nature and route of administration, and to visualize the future potential of these carriers in the pharmaceutical practice.

Nanocarriers may (i) improve solubility (of nanosuspensions, and microemulsions); (ii) improve permeability and; (iii) provide a better prevention from metabolism and elimination (through polymer conjugation, and mucoadhesive polymers),; (iv) enhance drug stability; and (v) improve pharmacokinetics of the drug used. However, each one of these types of nanoformulations is characterized by some drawbacks. The additional combination of two drug delivery systems, i.e., nanoparticles in an in-situ gel or in contact lens, may increase the positives and decrease the disadvantages of these drug delivery systems.

The assessment of potential health hazards for the use of nanoparticles as ophthalmic drug delivery systems is based on the properties or the toxicity of the bulk material, the characteristics and properties of the nanoparticles obtained and the route of their administration. The study, regarding the safety and cytotoxicity of nanoparticles, should be specific and thorough in the context of the patho-anatomical and pathophysiological characteristics of the eye as a target organ.

Over the last years, we have witnessed a dramatic increase of in the number of patented nanosized ophthalmic drug delivery systems. The undeniable advantages that these systems provide, as anin terms of improved precorneal residence time and ocular penetration, a sustained drug release, a reduced administration frequency and a higher patient compliance, give us grounds to believe that in the next few years some of these patented systemsm will find their place on in the ophthalmic drug market.
-end-
For more information about the article, please visit http://benthamscience.com/journals/current-pharmaceutical-design/article/144800/

Reference: Andonova, VY.; (2016). A New Direction in Ophthalmic Development: Nanoparticle Drug Delivery Systems. Current Pharmaceutical Design, DOI: 10.2174/1381612822666160813234723

Bentham Science Publishers

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.