Randomness a key in spread of disease, other 'evil'

January 02, 2018

ITHACA, N.Y. - An unfortunate church dinner more than 100 years ago did more than just spread typhoid fever to scores of Californians. It led theorists on a quest to understand why many diseases - including typhoid, measles, polio, malaria, even cancer - take so much longer to develop in some affected people than in others.

It's been known for more than 60 years that the incubation periods of numerous diseases follow a certain pattern: relatively quick appearance of symptoms in most cases, but longer - sometimes much longer - periods for others. It's known as Sartwell's law, named for Philip E. Sartwell, the epidemiologist who identified it in the 1950s, but why it holds true has never been explained.

"For some reason, [biologists don't] see it as a mystery," said Steve Strogatz, the Jacob Gould Schurman Professor of Applied Mathematics. "They just see it as a fact. But we see it as, 'Why? Why does this keep coming up?'"

Through mathematical modeling and application of two classic problems in probability theory - the "coupon collector" and the "random walk" - Strogatz and doctoral student Bertrand Ottino-Löffler propose an explanation.

Working with a simple mathematical model in which chance plays a key role, they calculated how long it would take a bacterial infection or cancer cell to take over a network of healthy cells. The distribution of incubation times in most cases, they contend, is close to "lognormal" - meaning that the logarithms of the incubation periods, rather than the incubation periods themselves, are normally distributed.

This emerges from the random dynamics of the incubation process itself, as a pathogen or mutant competes with the cells of its host.

Their paper, "Evolutionary Dynamics of Incubation Periods," was published Dec. 21 in eLife. Contributing biomedical background was Jacob Scott, physician-scientist in the Department of Translational Hematology and Oncology Research at the Cleveland Clinic.

Reading Scott's blog, Cancer Connector, motivated Strogatz and Ottino-Löffler to study disease incubation dynamics.

"I saw a post about using evolution on networks to analyze cancer, which seemed interesting because cancer is very much an evolutionary disease," Strogatz said. "People including Jake have been looking at cancer from this evolutionary perspective."

The discovery that incubation periods tend to follow right-skewed distributions - with symptoms quickly developing for most people, with much longer periods for a few, so that the bell curve has a long "tail" to the right - originally came from 20th-century epidemiological investigations of incidents in which many people were exposed to a pathogen. For example, at the 1914 church dinner in Hanford, California, 93 individuals became infected with typhoid fever after eating contaminated spaghetti.

Using the known time of exposure and onset of symptoms for the 93 cases, California medical examiner Wilbur Sawyer found that the incubation periods ranged from three to 29 days, with a mode (most common time frame) of only six days. Most people were sickened within a week of exposure, but for some, it took four weeks to get sick.

As it turns out, nearly all diseases - and as Strogatz and Ottino-Löffler contend, most situations where "good" is overtaken by "evil" - follow this pattern of quick proliferation for the majority, with a few "victims" lasting longer before finally succumbing. The different levels of health and of exposure to the pathogen can certainly play a role, Strogatz said, but are not the determining factors.

Strogatz's proposal follows the "coupon collector" theory: Imagine someone collecting baseball cards or stamps in a series. If a random item arrives every day, and your luck is bad, you may have to wait a long time to collect those last few.

Strogatz admits that while it's tricky to generalize too broadly, this theory holds up following countless simulations and analytical calculations performed by Ottino-Löffler. And this could be helpful in explaining not only disease proliferation, but also other examples of "contagion" - including computer viruses and bank failures, the researchers say.

"In a very stripped down, simplified picture of reality, you'd expect to see this right-skewed mechanism in many situations," Strogatz said. "And it seems that you do - it's sort of a basic vocabulary of invasion. It's a powerful underlying current that's always there."
-end-


Cornell University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.