Nav: Home

Storage wars

January 02, 2019

One answer to our greenhouse gas challenges may be right under our feet: Soil scientists Oliver Chadwick of UC Santa Barbara and Marc Kramer of Washington State University have found that minerals in soil can hold on to a significant amount of carbon pulled from the atmosphere. It's a mechanism that could potentially be exploited as the world tries to shift its carbon economy.

"We've known for quite a long time that the carbon stored on minerals is the carbon that sticks around for a long time," said Chadwick, co-author of the paper, "Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale," published in the journal Nature Climate Change. How much carbon the soil can take and how much it can keep, he said, are dependent on factors including temperature and moisture.

"When plants photosynthesize, they draw carbon out of the atmosphere, then they die and their organic matter is incorporated in the soil," Chadwick explained. "Bacteria decompose that organic matter, releasing carbon that can either go right back into the atmosphere as carbon dioxide or it can get held on the surface of soil minerals."

Water plays a significant role in the soil's ability to retain carbon, say the researchers. Chadwick and Kramer consulted soil profiles from the National Ecological Observatory Network (NEON) and from a globally representative archived data set for this first-ever global-scale evaluation of the role soil plays in producing dissolved organic matter and storing it on minerals. Wetter climates are more conducive to formation of minerals that are effective at storing carbon, therefore much of the Earth's estimated 600 billion metric tons of soil-bound carbon is found in the wet forests and tropical zones. Arid places, meanwhile, tend to have a "negative water balance" and can thus store far less organic carbon. According to Chadwick, the findings suggest that even a small, strategic change in the water balance could drive greater carbon storage.

"That's not as easy as it sounds, because water is dear," Chadwick said, and in places where a shift in soil moisture could tip the water balance from negative to positive -- like the desert -- there's not enough water to begin with. "So, it doesn't actually make any sense to spread a lot of water out over the landscape because water is hugely valuable," he added.

Climate change is another driver to consider. As the Earth warms, microbial activity increases and, in turn, so does the potential for carbon to be released back into the atmosphere at a greater rate than photosynthesis can draw it out. Increased evaporation due to a warmer climate also decreases the amount of water in the soil available to dissolve and move carbon to minerals deep below the surface.

There is still a lot to investigate and several hurdles to overcome as soil scientists everywhere consider ways to tip the balance of the Earth's soil from carbon source to carbon sink, but according to these researchers, understanding this relatively little-known but highly significant carbon storage pathway is a start.

"We know less about the soils on Earth than we do about the surface of Mars," said Kramer. "Before we can start thinking about storing carbon in the ground, we need to actually understand how it gets there and how likely it is to stick around. This finding highlights a major breakthrough in our understanding."

Among the next steps for the scientists is to date the mineral-stored carbon in the soil to better understand how long these reactive (typically iron and aluminum) minerals can keep carbon out of the air. "Which is really important if we're going to put effort into trying to store carbon in the soil," Chadwick said. "Is it going to stay there long enough to matter? If we put it in and it comes out five years later, it's not solving our problem, and we ought to be barking up a different tree."
-end-


University of California - Santa Barbara

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.