Researchers determine how a specific protein regulates tumor growth

January 02, 2020

(Boston)--Immune checkpoints are surface proteins that cancer cells use to evade immune response. These surface proteins are critical for cancer cell growth and drugs targeting these proteins have revolutionized the management of patients with a wide array of cancers. Finding a mechanism to degrade these immune checkpoints may allow the immune system to kill cancer cells.

Researchers from Boston University School of Medicine (BUSM) have discovered the protein c-Cbl has the ability to degrade checkpoint protein PD-1, a protein found on T cells that helps keep them from attacking other cells in the body. Manipulating c-Cbl's ability to regulate expression of PD-1 may be beneficial in the treatment of certain cancers including melanoma, bladder, kidney, breast and non-small lung cancers.

Cancer cells often increase their expression to "trick" the immune system and avoiding being detected as foreign or harmful and thus avoid being attacked or destroyed. Manipulating c-Cbl's ability to regulate expression of PD-1 may be incredibly beneficial in the treatment of these cancers.

Researchers examined the effect of c-Cbl on immune cells on experimental models lacking one copy of the c-Cbl gene. Tumor cells were implanted in these models and growth of the tumors was compared between models lacking the gene and unmodified models which served as controls. The researchers found that tumor growth was greater in the genetically the modified model.

According to the researchers, it may be possible in the near future to develop therapies that will inhibit tumor growth by activating c-Cbl protein. "While drugs targeting PD-1 are currently available for clinical use and such agents command a global market cap of more than $3 billion, only a small fraction of cancer patients respond to them. This trend suggests a need for agents that work simultaneously on more than one cancer-causing mechanism. Activating c-Cbl will degrade several proteins that contribute to tumor formation allowing the effects of its actions to go above and beyond PD-1 medications alone," explained corresponding author Vipul Chitalia, MD, PhD, associate professor of medicine at BUSM.

These findings appear online in the journal Scientific Reports.
Funding for this study was provided by R01CA175382, R01 HL132325 and Evans Faculty Merit award (V.C.C.); R21CA191970 and R21CA193958 (N.R.); NIH R01 HL132325 (M.B.); and T32 Research Training in Nephrology T32 DK007053-44.

Boston University School of Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to