Nav: Home

ORNL researchers advance performance benchmark for quantum computers

January 02, 2020

Researchers at the Department of Energy's Oak Ridge National Laboratory have developed a quantum chemistry simulation benchmark to evaluate the performance of quantum devices and guide the development of applications for future quantum computers.

Their findings were published in npj Quantum Information.

Quantum computers use the laws of quantum mechanics and units known as qubits to greatly increase the threshold at which information can be transmitted and processed. Whereas traditional "bits" have a value of either 0 or 1, qubits are encoded with values of both 0 and 1, or any combination thereof, allowing for a vast number of possibilities for storing data.

While still in their early stages, quantum systems have the potential to be exponentially more powerful than today's leading classical computing systems and promise to revolutionize research in materials, chemistry, high-energy physics, and across the scientific spectrum.

But because these systems are in their relative infancy, understanding what applications are well suited to their unique architectures is considered an important field of research.

"We are currently running fairly simple scientific problems that represent the sort of problems we believe these systems will help us to solve in the future," said ORNL's Raphael Pooser, principal investigator of the Quantum Testbed Pathfinder project. "These benchmarks give us an idea of how future quantum systems will perform when tackling similar, though exponentially more complex, simulations."

Pooser and his colleagues calculated the bound state energy of alkali hydride molecules on 20-qubit IBM Tokyo and 16-qubit Rigetti Aspen processors. These molecules are simple and their energies well understood, allowing them to effectively test the performance of the quantum computer.

By tuning the quantum computer as a function of a few parameters, the team calculated these molecules' bound states with chemical accuracy, which was obtained using simulations on a classical computer. Of equal importance is the fact that the quantum calculations also included systematic error mitigation, illuminating the shortcomings in current quantum hardware.

Systematic error occurs when the "noise" inherent in current quantum architectures affects their operation. Because quantum computers are extremely delicate (for instance, the qubits used by the ORNL team are kept in a dilution refrigerator at around 20 millikelvin (or more than -450 degrees Fahrenheit), temperatures and vibrations from their surrounding environments can create instabilities that throw off their accuracy. For instance, such noise may cause a qubit to rotate 21 degrees instead of the desired 20, greatly affecting a calculation's outcome.

"This new benchmark characterizes the 'mixed state,' or how the environment and machine interact, very well," Pooser said. "This work is a critical step toward a universal benchmark to measure the performance of quantum computers, much like the LINPACK metric is used to judge the fastest classical computers in the world."

While the calculations were fairly simple compared to what is possible on leading classical systems such as ORNL's Summit, currently ranked as the world's most powerful computer, quantum chemistry, along with nuclear physics and quantum field theory, is considered a quantum "killer app." In other words, it is believed that as they evolve quantum computers will be able to more accurately and more efficiently perform a wide swathe of chemistry-related calculations better than any classical computer currently in operation, including Summit.

"The current benchmark is a first step towards a comprehensive suite of benchmarks and metrics that govern the performance of quantum processors for different science domains," said ORNL quantum chemist Jacek Jakowski. "We expect it to evolve with time as the quantum computing hardware improves. ORNL's vast expertise in domain sciences, computer science and high-performance computing make it the perfect venue for the creation of this benchmark suite."

ORNL has been planning for paradigm-shifting platforms such as quantum for more than a decade via dedicated research programs in quantum computing, networking, sensing and quantum materials. These efforts aim to accelerate the understanding of how near-term quantum computing resources can help tackle today's most daunting scientific challenges and support the recently announced National Quantum Initiative, a federal effort to ensure American leadership in quantum sciences, particularly computing.

Such leadership will require systems like Summit to ensure the steady march from devices such as those used by the ORNL team to larger-scale quantum systems exponentially more powerful than anything in operation today.

Access to the IBM and Rigetti processors was provided by the Quantum Computing User Program at the Oak Ridge Leadership Computing Facility, which provides early access to existing, commercial quantum computing systems while supporting the development of future quantum programmers through educational outreach and internship programs. Support for the research came from DOE's Office of Science Advanced Scientific Computing Research program.

"This project helps DOE better understand what will work and what won't work as they forge ahead in their mission to realize the potential of quantum computing in solving today's biggest science and national security challenges," Pooser said.

Next, the team plans to calculate the exponentially more complex excited states of these molecules, which will help them devise further novel error mitigation schemes and bring the possibility of practical quantum computing one step closer to reality.
-end-
UT-Battelle manages ORNL for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit https://science.energy.gov/.

DOE/Oak Ridge National Laboratory

Related Quantum Computing Articles:

New method predicts spin dynamics of materials for quantum computing
Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.
Speeding-up quantum computing using giant atomic ions
An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.
Boson particles discovery provides insights for quantum computing
Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.
'Valley states' in this 2D material could potentially be used for quantum computing
New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.
Sound of the future: A new analog to quantum computing
In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Virginia Tech researchers lead breakthrough in quantum computing
A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.
Limitation exposed in promising quantum computing material
Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.
More Quantum Computing News and Quantum Computing Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.