168 New stars near the Orion region discovered by Yale, Venezuelan and Smithsonian scientists

January 03, 2001

Finding could help pinpoint time of planet formations

A team of astronomers from Yale, Venezuela and the Smithsonian Institution have identified 168 young stars, about half the mass of the sun, in a region called the Orion star forming complex, which is 1,400 light years from Earth.

"This is just the tip of the iceberg," said César Briceno, who started the study as a research scientist in Yale's physics department in 1998 and is now a staff astronomer at the Centro De Investigaciones de Astronomia in Venezuela. "This is ongoing work. The 168 stars were found in the very first strip of sky we observed; the entire survey area is about six times that size, so we expect to find a few thousand stars before our study is done."

Published in today's issue of Science, the results of the study, Briceno said, offer important constraints for theories on how fast planetary systems can form. "The stars we found are all between one and 10 million years old. Our study shows evidence that the gaseous, dusty disks surrounding the youngest stars have largely disappeared in their 10 million-year-old siblings, possibly because the dust in the disk has coagulated into larger bodies like planets. These preliminary results suggest that solar-like stars can form planets in about 10 million years; a lot faster than previously thought."

The stars were identified using a large CCD Mosaic digital camera developed jointly between Yale and Venezuelan institutions. It is installed on a powerful wide-field telescope at the Venezuela National Observatory, located at an elevation of 12,000 feet. This unique combination allows researchers to cover very large areas of the sky in a very efficient way.

"This is the first time young stars have been discovered using this innovative technique," said Briceno. "We took pictures of the same area of sky over and over again to identify the young stars."

Using software specially developed by Yale astronomy graduate student Katharine Vivas, the team picked candidates among stars that would vary in brightness over days and weeks. Young stars were then confirmed by follow-up observations conducted at the Wisconsin-Indiana-Yale National Optical Astronomical Observatories (WIYN) telescope and the 60-inch telescope at the Smithsonian Astrophysical Observatory in Arizona.

While research efforts have focused on targeting the youngest stars, Briceno said that identifying older stars is crucial in determining the time scales for the coagulation of dust grains into larger bodies such as planets. These older stellar populations are difficult to find because they are widely spread over the sky, and their molecular clouds have been dispersed and so no longer serve as markers for their positions.

Other researchers on the study included Jeffrey Snyder and Peter Andrews of Yale's physics and astronomy departments; Nuria Calvet of the Centro de Investigaciones de Astronomia in Venezuela and the Smithsonian Center for Astrophysics; Lee Hartmann, and Perry Berlind of the Smithsonian Center for Astrophysics; Ricardo Pacheco of the Centro de Investigaciones de Astronomia and the Universidad de los Andes in Venezuela; and David Herrera, Lysett Romero and Gerardo Sanchez of the Centro de Investigaciones de Astronomia.
-end-
This study is funded by grants from the National Science Foundation and the NASA Origins of Solar Systems Program, and with support from the Venezuelan Ministry of Science and Technology.

Yale University

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.