Nav: Home

Genes affecting our communication skills relate to genes for psychiatric disorder

January 03, 2017

The researchers studied the genetic overlap between the risk of having these psychiatric disorders and measures of social communicative competence - the ability to socially engage with other people successfully - during middle childhood to adolescence. They showed that genes influencing social communication problems during childhood overlap with genes conferring risk for autism, but that this relationship wanes during adolescence. In contrast, genes influencing risk for schizophrenia were most strongly interrelated with genes affecting social competence during later adolescence, in line with the natural history of the disorder. The findings were published in Molecular Psychiatry on 3 January 2017.

Timing makes the difference

"The findings suggest that the risk of developing these contrasting psychiatric conditions is strongly related to distinct sets of genes, both of which influence social communication skills, but which exert their maximum influence during different periods of development", explained Beate St Pourcain, senior investigator at the MPI and lead author of the study.

People with autism and with schizophrenia both have problems interacting and communicating with other people, because they cannot easily initiate social interactions or give appropriate responses in return. On the other hand, the disorders of autism and schizophrenia develop in very different ways. The first signs of ASD typically occur during infancy or early childhood, whereas the symptoms of schizophrenia usually do not appear until early adulthood.

Features of autism or schizophrenia are found in many of us

People with autism have serious difficulties in engaging socially with others and understanding social cues, as well as being rigid, concrete thinkers with obsessive interests. In contrast, schizophrenia is characterised by hallucinations, delusions, and seriously disturbed thought processes. Yet recent research has shown that many of these characteristics and experiences can be found, to a mild degree, in typically developing children and adults. In other words, there is an underlying continuum between normal and abnormal behaviour.

Recent advances in genome-wide analyses have helped drawing a more precise picture of the genetic architecture underlying psychiatric disorders and their related symptoms in unaffected people. A large proportion of risk to disorder, but also variation in milder symptoms, stems from combined small effects of many thousands of genetic differences across the genome, known as polygenic effects. For social communication behaviour, these genetic factors are not constant, but change during childhood and adolescence. This is because genes exert their effects consistent with their biological programming.

Disentangling psychiatric disorders

"A developmentally sensitive analysis of genetic relationships between traits and disorders may help to disentangle apparent behavioural overlap between psychiatric conditions", St Pourcain commented.

George Davey Smith, Professor of Clinical Epidemiology at the University of Bristol and senior author of the study, said, "The emergence of associations between genetic predictors for different psychiatric conditions and social communication differences, around the ages the particular conditions reveal themselves, provides a window into the specific causes of these conditions".

David Skuse, Professor of Behavioural and Brain Sciences at University College London added, "This study has shown convincingly how the measurement of social communicative competence in childhood is a sensitive indicator of genetic risk. Our greatest challenge now is to identify how genetic variation influences the development of the social brain".
-end-
The data on unaffected individuals for this study came from a general population cohort, the Avon Longitudinal Study of Parents and Children, hosted by the University of Bristol. ASD and schizophrenia collections included several large, international autism genetic studies: the Psychiatric Genomics Consortium Autism group, the Psychiatric Genomics Consortium Schizophrenia group and the iPSYCH autism project in Denmark.

Max Planck Institute for Psycholinguistics

Related Autism Articles:

Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.
Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.
Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.
Autism and the smell of fear
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism.
Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.
More Autism News and Autism Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...