Nav: Home

Chemically modified insulin is available more quickly

January 03, 2017

Replacing a hydrogen atom by an iodine atom in insulin, the hormone retains its efficacy but is available more rapidly to the organism. Researchers at the University of Basel were able to predict this effect based on computer simulations and then confirm it with experiments. The results have been published in the Journal of Biological Chemistry.

Insulin is formed in the pancreas and regulates the blood glucose level. In the body it is stored as a zinc-bound complex of six identical molecules, called a hexamer. However, the physiologically active form is a single insulin monomer. Only when the body requires insulin the hexamer divides into monomers available for blood sugar regulation.

Researchers attempt to control this disassembly process by developing artificial insulin preparations, in order to optimize clinical treatment of diabetes mellitus. By means of chemical modifications, the release and availability of insulin can be improved. One possible approach is to strategically replace individual atoms in a targeted manner. This results in what is known as an insulin analog, which differs from natural insulin in both structure and properties.

Artificial insulin is released more rapidly

The team led by Professor Markus Meuwly from the Department of Chemistry at the University of Basel has investigated this process in collaboration with researchers from the USA and Australia. The researchers exchanged a single hydrogen atom by an iodine atom which modulates intermolecular interactions that resulted in more rapid insulin disassembly and release.

Introducing the iodine atom improved the insulins' availability, while the affinity for the insulin receptor and the biological function remained unchanged when compared to the natural hormone. These advantageous properties were first predicted by a combination of quantum chemistry and molecular dynamics simulations. In a next step, the stability changes of the chemically modified insulin were directly probed by using crystallographic and nuclear magnetic resonance experiments which confirmed the computations.

Clinical application possible

The use of halogen atoms is a promising approach for compound optimization in medicinal chemistry. The results obtained for iodinated insulin demonstrate that the concept of chemical modification has also great potential in the field of protein engineering. A future clinical application of the insulin analog, which differs from natural insulin by only a single atom, is quite conceivable.
-end-
Original source

Krystel El Hage, Vijay Pandyarajan, Nelson B. Phillips, Brian J. Smith, John G. Menting, Jonathan Whittaker, Michael C. Lawrence, Markus Meuwly, Michael A. Weiss
Extending Halogen-Based Medicinal Chemistry to Proteins: Iodo-Insulin as a Case Study
Journal of Biological Chemistry (2016), doi: 10.1074/jbc.M116.761015

University of Basel

Related Insulin Articles:

Diabetes patients still produce insulin
Some insulin is still produced in almost half of the patients that have had type 1 diabetes for more than ten years.
New type of insulin-producing cell discovered
In people with type I diabetes, insulin-producing beta cells in the pancreas die and are not replaced.
A sustained and controllable insulin release system
Researchers from Kumamoto University, Japan have developed an insulin release system with sustained and controllable delivery.
Chemically modified insulin is available more quickly
Replacing a hydrogen atom by an iodine atom in insulin, the hormone retains its efficacy but is available more rapidly to the organism.
Insulin resistance and polycystic ovary syndrome
Insulin resistance represents a major issue for people with polycystic ovary syndrome (PCOS), an endocrine disorder which is very common in young women, according to a new analysis of available data carried out by Dr.
Insulin resistance reversed by removal of protein
By removing the protein galectin-3 (Gal3), a team of investigators led by University of California School of Medicine researchers were able to reverse diabetic insulin resistance and glucose intolerance in mouse models of obesity and diabetes.
Snails' speedy insulin
University of Utah researchers have found that the structure of an insulin molecule produced by predatory cone snails may be an improvement over current fast-acting therapeutic insulin.
Discovery could lead to treatment to better regulate insulin
A recent discovery made by an Iowa State University professor and a team of researchers holds promise for those who are obese or diabetic and do not benefit from medications to regulate their glucose and insulin levels.
Insulin-sensitive fat leads to obesity
SORLA is a protein that influences the balance of metabolic processes in adipose tissue, a particular form of fat.
Is an insulin pump the best therapy for everyone with type 1 diabetes?
Insulin pump therapy contributes to better blood glucose control in type 1 diabetes and, as pump technology continues to improve and become part of sensor-controlled feedback and artificial pancreas systems, essentially all patients would benefit from their capabilities according to a Commentary published in Diabetes Technology & Therapeutics.

Related Insulin Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".