Nav: Home

A cause of possible genetic problems in mitochondria is revealed

January 03, 2019

A group of researchers from the Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER) has revealed the importance of eliminating any excess of defective products that might have accumulated in the mitochondria, as its presence generates mitochondrial instability and information loss on the mitochondrial genome. The study can bring new ways to understand the molecular basis of some human diseases that are stem from poor functioning of the mitochondria and, in this way, allow for the development of therapies against these diseases.

The work has been carried out at CABIMER by the doctors Sonia Silva and Lola P. Caminero under the direction of Andrés Aguilera, Professor of Genetics at the University of Seville and director of CABIMER. Its results have been collected in an article written by the researchers and published in Proceedings of the National Academy of Sciences USA (PNAS), a prestigious review published by the American Academy of Sciences.

Mitochondria are organelles that exist within cells. They breathe the oxygen that comes to the cells to catabolise sugars and produce energy. They also make proteins as important as the Iron-Sulphur proteins with different functions that are essential for DNA metabolism, such as replication and repair of the DNA nucleus. Mitochondria have their own genome.

The loss of mitochondrial information and of mitochondria gives rise to defective cell metabolism. As well as the lack of capacity to generate the energy necessary for the cells, the loss of mitochondrial information can generate an increase in oxygen free radicals that attack and damage the genetic material or produce Iron-Sulphur protein deficiencies. All this brings about incorrect cell functioning and eventually cell death.

The study reveals that Degradasome, a complex of two proteins whose function is to eliminate the defective RNA that is produced in the mitochondria, is essential for maintaining mitochondrial genome integrity. If the Degradasome proteins are inactive, RNA accumulates in the mitochondria and forms abnormal structures, known as DNA-RNA hybrids, that are very harmful because when found in excess, they impede mitochondrial DNA replication. The consequence of this is that as the cells divide, they lose mitochondrial DNA, so compromising mitochondrial and cell function.

Further to the basic interest in this discovery, the study can bring new ways to understand the molecular basis of some mitochondrial diseases and help to develop therapies for different human diseases that stem from poor mitochondrial functioning. Although they can occur because of defects in mitochondrial proteins, they are also associated with the loss of mitochondrial genetic material and with the material of mitochondria. In summary, Degradasome, when it eliminates defective RNA, allows for the propagation of healthy mitochondria in the cells, so preventing possible mitochondrial diseases.
-end-


University of Seville

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...