Nav: Home

Cancer cells steer a jagged path

January 03, 2019

A jagged little protein appears to be key to how cancer stem cells differentiate and enable metastasis, according to researchers at Rice University and the Duke University School of Medicine.

Rice scientists who have formed several theories on how cancer grows and spreads connected the dots for a more complete picture of tumor mechanics. At the center, they found JAG1, a ligand, or small protein, that interacts with a signaling pathway critical to regulating the fate of cells.

Their new paper in the Proceedings of the National Academies of Sciences backed by experiments at Duke shows how and why some cells differentiate within tumors and how they spread.

The researchers led by members of Rice's Center for Theoretical Biological Physics (CTBP) extended their models of hybrid epithelial-mesenchymal cancer stem cells that have the ability to not only resist chemotherapy but also band together in small groups and metastasize.

Epithelial cells form tissues that line the outer surfaces of organs. Mesenchymal cells are motile cells that are normally involved in such processes as wound repair. Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells become migratory mesenchymal cells. Cancer hijacks this process and becomes most aggressive by stopping it in the middle to form the metastasizing hybrids.

The Rice team had already published theories on how cancer stem cells communicate with each other and the outside world by taking control of the notch signaling pathway involved in extracellular signaling, wound healing and embryonic development. In those studies, they discovered how ligands that activate the pathway go rogue to hold migrating cancer cells together and help them attach to connective tissues at new locations.

The new work pulls all those hard-won discoveries together into a cohesive picture, with JAG1 as the prime suspect and inflammatory proteins in a supporting role.

The Rice researchers led by physicists José Onuchic and Herbert Levine also described for the first time how inflammatory proteins, including the cytokine interleukin 6, amplify signals between notch and jagged proteins that support hybrid epithelial-mesenchymal stem cells.

"We have a model of EMT, a model of stemness, a model of cancer metabolism and a model of notch-delta," Onuchic said. "In a real system, all these models are coupled. And in this particular case, we show that under stress, jagged's involved in all of them.

"The notch-delta pathway creates communication between cells, but things become problematic when the receptor is jagged instead of delta," he said.

"We already knew JAG1 was paramount for cells to assume this (hybrid) state where they can send and receive signals and coordinate with other cells to migrate together," said Federico Bocci, co-lead author of the paper and a graduate student at Rice. "And we also knew these molecules correlate to the proliferation potential of cells.

"Together, they give us the whole picture of why we believe jagged is a crucial mediator of epithelial-mesenchymal heterogeneity of cells in the tissue and an important player in this metastatic escape," he said.

The team at Duke led by Gayathri Devi, an associate professor in surgery and pathology and program director of the Duke Inflammatory Breast Cancer Consortium, saw evidence of heterogeneity in lab experiments on highly aggressive, inflammatory breast cancer cells.

"This heterogeneity remains a major roadblock to any clinical advances, because no 'magic bullet' can eradicate all types of cells in a tumor," she said. "Thus after most therapies, a few cells are left unharmed, a scenario that can lead to tumor relapse."

Duke graduate student Larisa Gearhart-Serna, co-lead author of the paper, used a novel tumor organoid model of inflammatory breast cancer cells that is enriched with cancer stem cells developed previously in Devi's lab to show that reducing the presence of JAG1 affected the cancer stem-like properties and capacity to proliferate. The work could lead to therapies that track down and destroy those cells.

"JAG1 may play crucial roles in regulating this heterogeneity, and inhibiting its levels can significantly curb tumor formation," Devi said. "We are now using these patient-derived tumor organoid models to identify druggable targets in the notch signaling pathway."

Bocci said mesenchymal stem cells tend to remain near a tumor's periphery, where they are exposed to the surrounding environment, particularly the suspect inflammatory proteins. Cells in the tumor's interior tend to spread out and become hybrids that are harder for drugs to destroy.

"This also highlights the role of jagged as a crucial mediator, connecting all these different axes of tumor progression," Bocci said.

Onuchic noted jagged ligands are important to the body's inflammatory system, so reducing their numbers carries risks of its own.

"We have learned that when bad things happen and cells are under stress, there's high levels of jagged in the neighborhood," he said. "Any therapy that comes from this work will be related to controlling the level of jagged, but you cannot completely get rid of it because it has beneficial functions."

Levine suggested jagged could serve as a target for new diagnostic tools.

"There's another aspect to what this work helps us do, and that's to judge whether a tumor is aggressive enough to treat," he said. "There's a lot of literature based on measuring tumors to understand the chances of a person getting a metastatic disease. If we can identify features like jagged that help tell us if a tumor is really aggressive, this will also be an important result."

Co-authors of the paper are lab analyst Mariana Ribeiro of Duke; Rice alumni Marcelo Boareto of ETH Zurich and the Swiss Institute of Bioinformatics and Mohit Kumar Jolly, an assistant professor at the Indian Institute of Science; and the late Eshel Ben-Jacob, who was a senior investigator at the CTBP.

The research was supported by the National Science Foundation, the Department of Defense Breast Cancer Research Program Breakthrough Award, the Duke School of Medicine Bridge Research Fund, the Hasselman Fellowship at Rice, the Gulf Coast Consortia, the Computational Cancer Biology Training Program through the Cancer Prevention and Research Institute of Texas and the São Paulo Research Foundation.
Read the abstract at

This news release can be found online at

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Cancer cells coordinate to form roving clusters:

How cancer turns good cells to the dark side:

José Onuchic bio:

Herbert Levine bio:

Gayathri Devi lab:

Duke Cancer Institute:

Center for Theoretical Biological Physics:

Wiess School of Natural Sciences:


Video produced by Federico Bocci/Rice University

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to

Rice University

Related Rice Articles:

New rice fights off drought
Scientists at the RIKEN Center for Sustainable Resource Science (CSRS) have developed strains of rice that are resistant to drought in real-world situations.
Domesticated rice goes rogue
We tend to assume that domestication is a one-way street and that, once domesticated, crop plants stay domesticated.
Protecting rice crops at no extra cost
A newly identified genetic mechanism in rice can be utilized to maintain resistance to a devastating disease, without causing the typical tradeoff -- a decrease in grain yield, a new study reports.
Every grain of rice: Ancient rice DNA data provides new view of domestication history
Now, using new data collected samples of ancient, carbonized rice, a team of Japanese and Chinese scientists have successfully determined DNA sequences to make the first comparisons between modern and ancient rice.
Four newly identified genes could improve rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture.
Infants who ate rice, rice products had higher urinary concentrations of arsenic
Although rice and rice products are typical first foods for infants, a new study found that infants who ate rice and rice products had higher urinary arsenic concentrations than those who did not consume any type of rice, according to an article published online by JAMA Pediatrics.
New resource for managing the Mexican rice borer
A new article in the Journal of Integrated Pest Management provides information on the biology and life cycle of the Mexican rice borer (Eoreuma loftini), and offers suggestions about how to manage them.
Fighting rice fungus
Plant scientists are uncovering more clues critical to disarming a fungus that leads to rice blast disease and devastating crop losses.
The origin and spread of 'Emperor's rice'
Black rice was prized in ancient times for its color and is prized in modern times for its high levels of antioxidants, but its early history has been shrouded in mystery until now.
Trigger found for defense to rice disease
Biologists have discovered how the rice plant's immune system is triggered by disease, in a discovery that could boost crop yields and lead to more disease-resistant types of rice.

Related Rice Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.