Nav: Home

Discovery in cell development changes understanding of how genes shape early embryos

January 03, 2019

PHILADELPHIA - Our bodies hold roughly 14 trillion cells, each containing a nucleus with DNA measuring two meters long by 20 atoms wide. To fit inside each nucleus, DNA coils around specialized proteins. These spools of wrapped DNA inhibit gene regulatory proteins from binding to protein-coding stretches along the genome, which help keep genes in the "off" position when they're not needed.

Until now, it was unclear how this DNA packing affected development in early embryos. In a paper published this week in Science, researchers from the Perelman School of Medicine at the University of Pennsylvania found that in mouse embryos--only eight days after fertilization--compacted regions along the genome increase at protein-coding genes. Days later in the cell differentiation phase, these domains open to allow certain genes to be read and made into their corresponding proteins.

"This is a fundamental change in our understanding of how genes are controlled in the early embryo, even if we can't yet see all the potential clinical impacts," said Ken Zaret, PhD, director of the Penn Institute of Regenerative Medicine and a professor of Cell and Developmental Biology. "This study demonstrates the importance of the 'off position' for gene activity in early animal development."

First author Dario Nicetto, PhD, a postdoctoral fellow in Zaret's lab, explains that he and coauthors think that during the earliest stages of development, more compacted gene-coding regions arise so that a cell can make rapid "decisions" about which genes should be made into proteins. However, if genes are not open at the correct regions to be read and made into appropriate proteins, cells lose their proper identity and give rise to damaged tissue, and eventually death.

The team also found that compacted regions were marked by three methyl molecules, which occur at specific sites of protein binding along the genome. Basically, more trimethylation leads to more compaction, which means less of the genome is available to mRNA to eventually make full-length proteins. On the other hand, less trimethylation means less compaction, so more of the genome is available for transcribing into working proteins.

The team showed that if they deactivated the enzymes that add the methyl groups onto chromosomes, it causes out-of-place expression of cell-inappropriate genes leading to the eventual death of tissue. For example, they found that genes that are not normally "on" in liver cells are activated, which led to cell death and ultimately inadequate liver function.

Future studies will look at how the three enzymes "learn" which parts of the genome to silence.
-end-
This study was funded by the National Institutes of Health (GM036477, GM110174, DP2MH107055) and the Charles E. Kaufman Foundation (KA2016-85223).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $405 million awarded in the 2017 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; Penn Wissahickon Hospice; and Pennsylvania Hospital - the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine, and Princeton House Behavioral Health, a leading provider of highly skilled and compassionate behavioral healthcare.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2017, Penn Medicine provided $500 million to benefit our community.

University of Pennsylvania School of Medicine

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".