Scientists find a new use for already known anti-cancer drugs

January 03, 2020

The world scientific community is waging a difficult and prolonged war on cancer. New research in the field of immunogenic cell death can extend the area of drugs application and ensure patients' protection from relapse after therapy.

Cancer treatment is not just the removal of the tumor cells from the body, and chemotherapy. The doctors' aim is to provide a scenario that would prevent tumor cells from proliferating and causing a new disease.

For many years, scientists at the Lobachevsky State University of Nizhny Novgorod and the University of Ghent (Belgium) have been engaged in research aimed to minimize the harm to the body after cancer treatment and have been looking for new approaches to treating cancer patients.

The project, supported by a grant from the Russian Science Foundation and headed by Dmitry Krys'ko, leading researcher of the Lobachevsky University's Institute of Biology and Biomedicine, professor at Ghent University, has yielded its first major results.

According to Professor Dmitry Krys'ko, the existing anti-cancer therapy (chemotherapy, radiation therapy and photodynamic therapy) causes great damage to the body as a whole, while his team's research is aimed at the stimulation of immunogenic cell death, which not only minimizes the damage, but also enhances the efficacy of treatment by involving the body's resources in the fight against cancer.

"In this study, we tested some drugs for anticancer therapy based on photodynamic treatment and investigated their new immunogenic properties. We can say that not only the external impact will be used to fight cancer, but also the body itself will engage in the fight by triggering the reactions of the adaptive immune response.

The concept of immunogenic cell death (ICD) includes a programmed death of cancer cells with subsequent release of molecules that give a danger signal to the immune system. We tested the drugs that are already used in cancer therapy, and enhanced the action of these agents," said Professor Krys'ko.

The study employed a number of methods and approaches that were used in in vitro and in vivo experiments. At the laboratories of Lobachevsky University and the University of Ghent, researchers studied how substances accumulate in the cell, analyzed cell death types when cells were exposed to photosensitizers, and revealed molecular mechanisms of the phenomena that occur to the cells in the process of their death.

"In this study, we examined the cellular-level response of dendritic cells (immune system components) in their interaction with cancer cells that were exposed to photodynamic therapy (PDT) and proved that photodynamic therapy can activate the body's own immune response," said Victoria Turubanova, research assistant of the Department of General and Medical Genetics at the UNN Institute of Biology and Biomedicine.

The researchers have examined additional aspects of the use of existing drugs for developing new cancer protocols based on the stimulation of the immune system. Such variants of therapy reduce the risk of metastasis and enhance the effectiveness of the patient's recovery.

A series of experiments on laboratory mice was performed, resulting in an important conclusion that the cellular vaccine prepared from dying cancer cells protects the mouse from cancer by preventing tumor development in the body.

Based on the results obtained, the researchers have published their article «Immunogenic cell death induced by a new photodynamic therapy based on Photosens and Photodithazine» in the BMC Journal for ImmunoTherapy of Cancer (with the impact factor of 8.67), which describes new variants of photosensitizers that cause immunogenic cell death of cancer cells.

Lobachevsky University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to