LLNL scientists create a virtual star over Hawaii for the world's largest telescope

January 04, 2002

LIVERMORE, Calif. -- Scientists from the Lawrence Livermore National Laboratory, in collaboration with the W.M. Keck Observatory, have created a "virtual" guide star over Hawaii. The "virtual" guide star will be used with adaptive optics on the Keck II telescope to greatly increase the resolution of fine details of astronomical objects.

Installed in 1999, the Keck adaptive optics system has enabled astronomers to minimize the blurring effects of the Earth's atmosphere, producing images with unprecedented detail and resolution. The adaptive optics system uses light from a relatively bright star to measure the atmospheric distortions and to correct for them, but only about one percent of the sky contains stars sufficiently bright to be of use. The new virtual guide star will enable Keck astronomers to study nearly the entire sky with the high resolution of adaptive optics.

The virtual guide star, which achieved "first light" on Dec. 23, 2001, was created using a 20-watt dye laser to illuminate a diffuse layer of sodium atoms that exists 60 miles (95 km) above the Earth's surface. When activated by the laser, the sodium atoms produced a very small source of light, less than a meter (39 inches) in diameter, that allowed the adaptive optics system to measure the distortions of the atmosphere.

The resulting virtual star was measured at 9.5 magnitude, about 25 times fainter than anything that can be seen by the unaided eye, but bright enough to operate the adaptive optics system. The star appeared orange, the familiar color of common low-pressure sodium vapor streetlights. The virtual guide star system was developed in collaboration with the W.M. Keck Observatory, with additional support provided by the National Aeronautics and Space Administration (NASA) and the National Science Foundation's Center for Adaptive Optics (CfAO).

Adaptive optics refers to the ability to compensate or adapt to turbulence in the Earth's atmosphere, removing the blurring of starlight. Adaptive optics systems measure the distortions of the light from a star and then remove the distortions by bouncing the light off a deformable mirror that corrects the image several hundred times per second.

With Keck adaptive optics, for which LLNL scientists developed the fast real-time control system, astronomers are obtaining infrared images with four times better resolution than the Hubble Space Telescope, which orbits high above the Earth's atmosphere. Many significant discoveries have already been attributed to Keck adaptive optics, and the Keck virtual guide star will lead to many more.

"We have seen lasers develop into powerful tools in fields ranging from medicine to compact disc players," said Claire Max of LLNL, principal investigator for the Keck laser project. "Our new virtual guide star marks the start of a new era, when we'll see lasers contributing to astronomy as well."

The Keck virtual guide star system consists of a dye laser that is used to produce light with the wavelength of the atomic sodium resonance line at 589 nm. The 20-watt output of the dye laser is projected out of a 20-inch (50 cm) lens attached to the side of the 10-meter Keck II telescope. It is based on a concept originally implemented by LLNL scientists at the University of California's Lick Observatory at Mount Hamilton, CA.

"We asked for an early present this year, and just before Christmas we were given a virtual star that will dramatically increase the research capabilities of the world's largest telescope," said Dr. Frederic Chaffee, director of the W.M. Keck Observatory. "This effort could not have been possible without the talent and dedication of our adaptive optics and laser guide star team. We couldn't be happier with these results, and we look forward to fully integrating the laser with our adaptive optics system by the middle of 2002."

The main components of the Keck adaptive optics system are a wavefront sensor camera, a fast control computer and a deformable mirror. The wavefront sensor camera measures distortions due to atmospheric turbulence using light from the guide star. A control computer computes the wavefront distortion up to 670 times a second and sends commands to the deformable mirror. The deformable mirror, about six inches (15 cm) in diameter, is made out of a thin sheet of reflective glass controlled by 349 actuators that can adjust the shape of the mirror by several microns, a distance large enough to correct for atmospheric distortions.

The Keck virtual guide star system is the world's most powerful laser currently in use at an astronomical telescope. The laser was developed by LLNL and LLNL staff played a key role in the deployment of the laser at the telescope.
-end-
For images of the virtual guide star, see http://www.llnl.gov/llnl/06news/NewsMedia/keck_images.html
For further images, go to http://www2.keck.hawaii.edu:3636/realpublic/gen_info/kiosk/news/laser.html

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.

DOE/Lawrence Livermore National Laboratory

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.