Coenzyme Q shortens life span of worms substantially, UCLA chemists report

January 04, 2002

A popular dietary supplement, Coenzyme Q, accelerates aging and death in a microscopic worm studied by UCLA biochemists.

Adult worms on a diet without Coenzyme Q live 60 percent longer than those on a diet rich in the lipid, reports Pamela Larsen, UCLA research associate in chemistry and biochemistry, and Catherine Clarke, UCLA associate professor of chemistry and biochemistry, in the Jan. 4 issue of the journal Science.

"Our research indicates that too much Coenzyme Q for adults can be harmful," said Clarke, who has studied Coenzyme Q for 10 years. "Too little is harmful, but so is too much."

In this respect, Coenzyme Q, a component of the cell necessary for growth and development, is similar to cholesterol, the UCLA biochemists said.

"Like cholesterol, Coenzyme Q is produced naturally by the body, and cells require it for life, but like cholesterol, too much of it is harmful," Clarke said.

Scientists do not yet know how much is too much or how much is optimal, Clarke said, adding that research on Coenzyme Q is still in its "infant stage."

Also called ubiquinone, Coenzyme Q supplements are sold as a means of boosting the immune system and promoting longevity.

The biochemists analyzed hundreds of Caenorhabditis elegans worms, giving one adult group a diet without Coenzyme Q, and another adult group a standard diet with Coenzyme Q. Surprisingly, the lower amounts of Coenzyme Q significantly extended their life span.

Because their entire life span lasts just a few weeks, C. elegans nematodes are frequently used by scientists to study aging, Larsen said.

"They go from eggs to reproductively active adults in just three-and-a-half days, then they age, they get wrinkled and slow down, and they die," she said.

Most of the worms, with mutations in different genes, developed normally on a diet with Coenzyme Q during their first three-and-a-half days of life, but those with a mutation in a particular gene (known as the clk-1 gene) were an exception. Research published last January (by Tanya Jonassen, a UCLA postdoctoral scholar in chemistry and biochemistry; Larsen; and Clarke) has established Coenzyme Q's importance in growth and development.

The adult worms without Coenzyme Q in their diet did not start to look old until later than the other group of worms, Larsen said. Why would adult worms have a much shorter life span, and age faster, with Coenzyme Q?

"Our findings suggest the reason for the shorter life span is that Coenzyme Q causes more oxidative damage than it prevents," Clarke said. She and Larsen plan to test this hypothesis in future research.

One theory of aging holds that "free radicals" damage lipids, proteins and DNA, and that anti-oxidants can reduce the damage from free radicals.

"Coenzyme Q is an anti-oxidant, fighting free radicals that damage our lipids, but it's likely that it's also a pro-oxidant," Clarke said. "This means that Coenzyme Q generates reactive oxidants in the mitochondria of the cells, which can generate free radicals."

Coenzyme Q plays an important role in energy metabolism, and performs several other functions in cells, some of which are understood only poorly or not at all, Clarke and Larsen said.

The optimal amount of Coenzyme Q may vary among individuals, and that amount may differ over the life cycle, the biochemists said.

Cells produce their own supply of Coenzyme Q, but produce less of it as we age. This knowledge leads many people to take Coenzyme Q as a daily supplement. Larsen and Clarke said their research in Science does not establish whether doing so is beneficial or harmful for humans.

Human cells produce Coenzyme Q-10, while the worms produce the "isoform" Coenzyme Q-9, which differs slightly. Larsen and Clarke plan to study different forms of Coenzyme Q, and learn more about its fundamental biochemistry.

"What we would like to know in future research," Larsen said, "is what are the Coenzyme Q levels in the worms that age very differently."

"We hope to learn how cells produce and transport Coenzyme Q, and learn more about Coenzyme Q's role in aging," Clarke said.
-end-
Their research published in Science was funded by the Glenn Foundation for Medical Research. Their newest research on Coenzyme Q, not yet published, is funded by the National Institutes of Health and the Ellison Foundation.

University of California - Los Angeles

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.