Discovery of a new drug target could lead to novel treatment for severe autism

January 04, 2016

Penn State University scientists have discovered a novel drug target and have rescued functional deficits in human nerve cells derived from patients with Rett Syndrome, a severe form of autism-spectrum disorder. The research, led by Gong Chen, professor of biology and the Verne M. Willaman Chair in Life Sciences at Penn State, could lead to a new treatment for Rett Syndrome and other forms of autism-spectrum disorders. A paper describing the research will be published on January 4, 2016 in the online Early Edition of the journal Proceedings of the National Academy of Sciences.

"The most exciting part of this research is that it directly uses human neurons that originated from Rett Syndrome patients as a clinically-relevant disease model to investigate the underlying mechanism," said Dr. Chen. "Therefore, the new drug target discovered in this study might have direct clinical implication in the treatment of Rett Syndrome and potentially for other autism-spectrum disorders as well."

The researchers differentiated stem cells derived from the skin cells of patients with Rett Syndrome into nerve cells that could be studied in the laboratory. These nerve cells carry a mutation in the gene MECP2, and such gene mutations are believed to be the cause of most cases of Rett Syndrome. The researchers discovered that these nerve cells lacked an important molecule, KCC2, that is critical to normal nerve cell function and brain development.

"KCC2 controls the function of the neurotransmitter GABA at a critical time during early brain development," Chen said. "Interestingly, when we put KCC2 back into Rett neurons, the GABA function returns to normal. We therefore think that increasing KCC2 function in individuals with Rett Syndrome may lead to a potential new treatment."

The researchers also showed that treating diseased nerve cells with insulin-like growth factor 1 (IGF1) elevated the level of KCC2 and corrected the function of the GABA neurotransmitter. IGF1 is a molecule that has been shown to alleviate symptoms in a mouse model of Rett Syndrome and is the subject of an ongoing phase-2 clinical trial for the treatment of the disease in humans.

"The finding that IGF1 can rescue the impaired KCC2 level in Rett neurons is important not only because it provides an explanation for the action of IGF1," said Xin Tang, a graduate student in Chen's Lab and the first-listed author of the paper, "but also because it opens the possibility of finding more small molecules that can act on KCC2 to treat Rett syndrome and other autism spectrum disorders."
-end-
In addition to Chen and Tang, the research team also includes Julie Kim, Li Zhou, Lei Zhang, and Zheng Wu at Penn State; Eric Wengert at Bucknell University; Carol Marchetto and Fred Gage at the Salk Institute for Biological Studies; and Cassiano Carromeu and Alysson Muotri at the University of California - San Diego.

The research was funded by grants from National Institutes of Health (MH083911 and AG045656) and a Stem Cell Fund from the Penn State Eberly College of Science.

CONTACT

Barbara Kennedy (PIO): science@psu.edu, (+1) 814-863-4682

IMAGE CAPTION

In this composite image, a human nerve cell derived from a patient with Rett syndrome shows significantly decreased levels of KCC2 compared to a control cell.

IMAGE CREDIT

Gong Chen lab, Penn State University

Penn State

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.