Nav: Home

When the Arctic coast retreats, life in the shallow water areas drastically changes

January 04, 2017

Bremerhaven/Germany, 4 January 2017. The thawing and erosion of Arctic permafrost coasts has dramatically increased in the past years and the sea is now consuming more than 20 metres of land per year at some locations. The earth masses removed in this process increasingly blur the shallow water areas and release nutrients and pollutants. Yet, the consequences of these processes on life in the coastal zone and on traditional fishing grounds are virtually unknown. Scientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) urge to focus our attention on the ecological consequences of coastal erosion in the January issue of the journal Nature Climate Change. According to the scientists, an interdisciplinary research program is required, and must involve policy-makers as well as inhabitants of the Arctic coasts right from the onset.

The difference could hardly be greater. In the winter, when the Beaufort Sea is frozen around the Canadian permafrost island of Herschel Island (Qikiqtaruk), the sea water in the sample bottles of the AWI researcher Dr Michael Fritz looks crystal clear. In summer, however, when the ice floes are melted and the sun and waves start to wear the cliff away, the water sample of the Potsdam geoscientist contains a cloudy broth.

"Herschel Island loses up to 22 metres of coast each year. The thawed permafrost slides down into the sea in the form of mud slides and blurs the surrounding shallow water areas so much that the brownish-grey sediment plumes reach many kilometres into the sea," reports the polar researcher.

His observations of Herschel Island can now be transferred to large parts of the Arctic. 34 percent of the coasts around the world are permafrost coasts. This means, especially in the Arctic, that its soil contains a large amount of frozen water, which keeps the sediments together like cement. If the permafrost thaws, the binding effect fails. The sediments as well as animal and plant remains, which are frozen in the permafrost, are suddenly released in the water and are washed away by the waves.

In this process, greenhouse gases such as carbon dioxide and methane are released and lead to even greater global warming. The eroded material also contains a lot of nutrients and pollutants such as nitrogen, phosphorus or mercury. These substances enter the sea, where they are further transported, degraded or accumulated and permanently alter the living conditions in the shallow water area. "We can until now only guess the implications for the food chain. To date, almost no research has been carried out on the link between the biogeochemistry of the coastal zone and increasing erosion and what consequences this has on ecosystems, on traditional fishing grounds, and thus also on the people of the Arctic," says Michael Fritz.

For this reason, Michael Fritz, the Dutch permafrost expert Jorien Vonk and AWI researcher Hugues Lantuit call on the polar research community to systematically investigate the consequences of coastal erosion for the arctic shallow water areas in the current issue of the journal Nature Climate Change. "The processes in the arctic coastal zone play an outstanding role for four reasons. Firstly, the thawed organic material is decomposed by microorganisms, producing greenhouse gases. Secondly, released nutrients stimulate the growth of algae, which can lead to the formation of low-oxygen zones. Thirdly, the addition of organic carbon increases the acidification of the sea, and fourth, the sediments are deposited on the seabed or are transported to the open ocean. This has direct consequences for the biology of the sea," the authors say.

The urgency of the topic also increases with the warming of the Arctic: "We believe that the erosion of the Arctic coasts will increase drastically as a result of rising temperatures, the shrinking of the protective sea ice cover, and the rising sea level," says AWI permafrost expert and co-author Professor Hugues Lantuit. He adds that "during the ice-free season the waves can hit the coast higher and affect more land". An erosion of that magnitude will without a doubt alter the food web in the coastal zone, and will affect those people who depend on fishing and who cultivate their traditional way of life along Arctic coasts.

The main reason why research on this topic has not been carried out so far is linked to logistics. Much of the arctic coastal and shallow water zones are not accessible either by car or plane, or by large icebreakers. There is also no arctic-wide station network at the coast that could be used by researchers to collect reliable data. "Politics and science must find common solutions here, for example within the framework of the EU research program Horizon 2020. In order to make concrete statements on the consequences of erosion, we need an interdisciplinary research program that includes policy-makers and the Arctic population from the beginning," says Michael Fritz.
-end-


Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

Related Greenhouse Gases Articles:

Mitigation of greenhouse gases in dairy cattle through genetic selection
Researchers in Spain propose mitigating methane production by dairy cattle through breeding.
Researchers control cattle microbiomes to reduce methane and greenhouse gases
''Now that we know we can influence the microbiome development, we can use this knowledge to modulate microbiome composition to lower the environmental impact of methane from cows by guiding them to our desired outcomes,'' Ben-Gurion University of the Negev Prof Mizrahi says.
A new look into the sources and impacts of greenhouse gases in China
Special issue of Advances in Atmospheric Sciences reveals new findings on China's GHG emissions and documents changes in local and regional environments.
New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.
Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.
Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.
White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.
Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.
What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.
Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.
More Greenhouse Gases News and Greenhouse Gases Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.