Nav: Home

Manufacturing platform makes intricate biocompatible micromachines

January 04, 2017

New York, NY--January 4, 2017--A team of researchers led by Biomedical Engineering Professor Sam Sia has developed a way to manufacture microscale-sized machines from biomaterials that can safely be implanted in the body. Working with hydrogels, which are biocompatible materials that engineers have been studying for decades, Sia has invented a new technique that stacks the soft material in layers to make devices that have three-dimensional, freely moving parts. The study, published online January 4, 2017, in Science Robotics, demonstrates a fast manufacturing method Sia calls "implantable microelectromechanical systems" (iMEMS).

By exploiting the unique mechanical properties of hydrogels, the researchers developed a "locking mechanism" for precise actuation and movement of freely moving parts, which can provide functions such as valves, manifolds, rotors, pumps, and drug delivery. They were able to tune the biomaterials within a wide range of mechanical and diffusive properties and to control them after implantation without a sustained power supply such as a toxic battery. They then tested the "payload" delivery in a bone cancer model and found that the triggering of release of doxorubicin from the device over 10 days showed high treatment efficacy and low toxicity, at 1/10 of the standard systemic chemotherapy dose.

"Overall, our iMEMS platform enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand and solves issues of device powering and biocompatibility," says Sia, also a member of the Data Science Institute. "We're really excited about this because we've been able to connect the world of biomaterials with that of complex, elaborate medical devices. Our platform has a large number of potential applications, including the drug delivery system demonstrated in our paper which is linked to providing tailored drug doses for precision medicine."

Most current implantable microdevices have static components rather than moving parts and, because they require batteries or other toxic electronics, have limited biocompatibility. Sia's team spent more than eight years working on how to solve this problem. "Hydrogels are difficult to work with, as they are soft and not compatible with traditional machining techniques," says Sau Yin Chin, lead author of the study who worked with Sia. "We have tuned the mechanical properties and carefully matched the stiffness of structures that come in contact with each other within the device. Gears that interlock have to be stiff in order to allow for force transmission and to withstand repeated actuation. Conversely, structures that form locking mechanisms have to be soft and flexible to allow for the gears to slip by them during actuation, while at the same time they have to be stiff enough to hold the gears in place when the device is not actuated. We also studied the diffusive properties of the hydrogels to ensure that the loaded drugs do not easily diffuse through the hydrogel layers."

The team used light to polymerize sheets of gel and incorporated a stepper mechanization to control the z-axis and pattern the sheets layer by layer, giving them three-dimensionality. Controlling the z-axis enabled the researchers to create composite structures within one layer of the hydrogel while managing the thickness of each layer throughout the fabrication process. They were able to stack multiple layers that are precisely aligned and, because they could polymerize a layer at a time, one right after the other, the complex structure was built in under 30 minutes.

Sia's iMEMS technique addresses several fundamental considerations in building biocompatible microdevices, micromachines, and microrobots: how to power small robotic devices without using toxic batteries, how to make small biocompatible moveable components that are not silicon which has limited biocompatibility, and how to communicate wirelessly once implanted (radio frequency microelectronics require power, are relatively large, and are not biocompatible). The researchers were able to trigger the iMEMS device to release additional payloads over days to weeks after implantation. They were also able to achieve precise actuation by using magnetic forces to induce gear movements that, in turn, bend structural beams made of hydrogels with highly tunable properties. (Magnetic iron particles are commonly used and FDA-approved for human use as contrast agents.)

In collaboration with Francis Lee, an orthopedic surgeon at Columbia University Medical Center at the time of the study, the team tested the drug delivery system on mice with bone cancer. The iMEMS system delivered chemotherapy adjacent to the cancer, and limited tumor growth while showing less toxicity than chemotherapy administered throughout the body.

"These microscale components can be used for microelectromechanical systems, for larger devices ranging from drug delivery to catheters to cardiac pacemakers, and soft robotics," notes Sia. "People are already making replacement tissues and now we can make small implantable devices, sensors, or robots that we can talk to wirelessly. Our iMEMS system could bring the field a step closer in developing soft miniaturized robots that can safely interact with humans and other living systems."
-end-
The study, "Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices," was supported by an NSF CAREER award, NIH R01 grant (HL095477-05), and NSF ECCS-1509748. Chin was supported by the National Science Scholarship (PhD) awarded by the Agency for Science, Technology and Research (Singapore). The researchers have a patent pending.

LINKS:
PAPER: http://robotics.sciencemag.org/10.1126/scirobotics.aah6451 (DOI: 10.1126/scirobotics.aah6451)
Science Robotics: http://robotics.sciencemag.org/
Sam Sia: http://bme.columbia.edu/samuel-k-sia
Molecular and Microscale Bioenigneering Laboratory: https://synaptic.bio/organizations/sialab
Columbia Engineering: http://www.engineering.columbia.edu/
Data Science Institute: http://datascience.columbia.edu/

Columbia Engineering

Columbia Engineering is one of the top engineering schools in the U.S. and one of the oldest in the nation. Based in New York City, the School offers programs to both undergraduate and graduate students who undertake a course of study leading to the bachelor's, master's, or doctoral degree in engineering and applied science. Columbia Engineering's nine departments offer 16 majors and more than 30 minors in engineering and the liberal arts, including an interdisciplinary minor in entrepreneurship with Columbia Business School. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to a broad array of basic and advanced research installations, from the Columbia Nano Initiative and Data Science Institute to the Columbia Genome Center. These interdisciplinary centers in science and engineering, big data, nanoscience, and genomic research are leading the way in their respective fields while our engineers and scientists collaborate across the University to solve theoretical and practical problems in many other significant areas.

Columbia University School of Engineering and Applied Science

Related Drug Delivery Articles:

Tiny bubbles offer sound solution for drug delivery
The blood-brain barrier protects the brain and central nervous system from harmful chemicals circulating in the blood but also prevents delivery of drugs that could help treat patients with brain cancers and diseases.
Making vessels leaky on demand could aid drug delivery
Scientists use magnets and nanoparticles to cause 'leaks' in blood vessels on demand.
Antidepressant may enhance drug delivery to the brain
New research from the National Institutes of Health found that pairing the antidepressant amitriptyline with drugs designed to treat central nervous system diseases, enhances drug delivery to the brain by inhibiting the blood-brain barrier in rats.
How molecular machines may drive the future of disease detection and drug delivery
In a study published in Nature Communications, University of Alberta researchers describe the creation of synthetic DNA motors in living cells.
Tiny magnetic implant offers new drug delivery method
University of British Columbia researchers have developed a magnetic drug implant -- the first of its kind in Canada -- that could offer an alternative for patients struggling with numerous pills or intravenous injections.
A new direction in ophthalmic development: Nanoparticle drug delivery systems
Most ophthalmic diseases are usually treated with topically administered drug formulations (e.g. eye drops).
Drug delivery modification sidesteps allergic responses
Duke has developed an altered version of the polyethylene glycol (PEG) polymer used to ferry drugs in the bloodstream that seems to evade PEG antibodies already present in humans due to its common use in consumer goods.
New capsule achieves long-term drug delivery
Researchers at MIT and Brigham and Women's Hospital have developed a drug capsule that remains in the stomach for up to two weeks after being swallowed, gradually releasing its drug payload over time.
Tiny super magnets could be the future of drug delivery
Microscopic crystals could soon be zipping drugs around your body, taking them to diseased organs.
New platform for roundworms could speed up drug delivery
Engineers at The University of Texas at Austin have developed the first large-scale in vivo drug discovery platform using C. elegans (roundworms) that could speed up scientific research and more accurately assess the effectiveness of new drugs in the treatment of neurodegenerative diseases, including Parkinson's and Huntington's disease.

Related Drug Delivery Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...