Nav: Home

Increasing rainfall in a warmer world will likely intensify typhoons in western Pacific

January 04, 2017

RICHLAND, Wash. -- An analysis of the strongest tropical storms, known as super typhoons, in the western Pacific over the last half-century reveals that they are intensifying. Higher global temperatures have enhanced global rainfall, particularly over the tropical oceans. Rain that falls on the ocean reduces salinity and allows typhoons to grow stronger.

"This work has identified an extremely important region affected by this, the western tropical Pacific known as Typhoon Alley. These storms are really destructive over that region," said oceanographer Karthik Balaguru of the Department of Energy's Pacific Northwest National Laboratory, who published the work in a recent issue of Nature Communications.

The unique contribution of this work is that it identifies the need to study upper ocean salinity in addition to temperature in examining the intensity of typhoons.

Typhoons -- the same storms as their Atlantic cousins known as hurricanes -- normally have a natural check on how intense they grow. The storms rely on heat from the ocean to build. Their strong winds whip up the ocean surface. This churns the ocean and brings deeper colder water to the surface, which cools off the surface and reduces the typhoon's power.

Previous studies suggested that as the planet warms, so does the surface of the ocean. As the temperature difference between surface ocean water and deeper water increases, ocean churning by typhoons cools the surface more strongly, which ultimately might decrease the intensity of tropical storms in the future.

But freshwater is less dense than saltwater. A warmer atmosphere brings more rainfall to the ocean than a cooler one. This freshwater collecting on top prevents the churning, keeping the surface warmer. Thus, a lack of ocean water mixing might mean a more intense storm.

Previously, studies that focused on global warming's effect on typhoons did not generally include the salinity factor, so Balaguru and colleagues at PNNL, National Oceanic and Atmospheric Administration and the Massachusetts Institute of Technology decided to incorporate it. This allowed them to look at the effect of freshwater on the ocean both in the past and the future.

They focused on the western Pacific Ocean, where almost a third of tropical storms form. First they looked at the salinity of the top layer of ocean. They saw that between 1958 and 2013, the ocean there did become less salty during typhoon season, and most of this decrease was in the top 50 meters of ocean. A quick overlay of the storms showed that the storm tracks fell along the areas of lower salinity.

To explore further, they looked at how the salinity changes affected the strength of super typhoons, storms that are as strong as category 4 or 5 hurricanes. To do so, they looked at the wakes of cold water the super typhoons left on the ocean as they passed, and how the wakes correlated with salinity. The results showed that in the regions of ocean that were less salty, the storms produced wakes that were not as cold.

The team then analyzed which of the two competing factors -- the intensity bump from a decrease in salinity or the intensity snag from a larger ocean temperature gradient -- played a bigger role in modulating the intensity of the super typhoons. They found that the influence of salinity was about 50 percent stronger than the ocean temperature effect on the intensity of super typhoons. Super typhoons are most affected by the changes because they rely strongly on ocean's heat as their fuel.

Plugging the relationships into climate model projections for the future, the team found that as greenhouse gases and temperature rise, the increase of rainfall over the oceans will ultimately lead to more intense storms. In addition, the team found this effect using almost 20 different climate models. This consistency gives the researchers confidence in the result.

"Already this effect is intensifying, and it gets worse in the future," said Balaguru. "The reason why this is so significant is that it's happening with the worst storms on the planet. Not only are they intense, but they are very, very big. It's happening in a really important region, to mostly small islands in the Pacific, such as the Philippines, Taiwan and other Oceania Islands. Besides, typhoons also impact many East Asian countries. And there is sea level rise in the background, a double whammy effect on top."
-end-
This work was supported by the Department of Energy Office of Science and the National Oceanic and Atmospheric Administration.

Reference: Karthik Balaguru, Gregory R. Foltz, L. Ruby Leung & Kerry A. Emanuel. Global warming-induced upper-ocean freshening and the intensification of super typhoons, Nature Communications November 25, 2016, doi: 10.1038/NCOMMS13670. (http://www.nature.com/articles/ncomms13670)

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

DOE/Pacific Northwest National Laboratory

Related Rainfall Articles:

Future rainfall could far outweigh current climate predictions
Scientists from the University of Plymouth analysed rainfall records from the 1870s to the present day with their findings showing there could be large divergence in projected rainfall by the mid to late 21st century.
NASA estimates Imelda's extreme rainfall
NASA estimated extreme rainfall over eastern Texas from the remnants of Tropical Depression Imelda using a NASA satellite rainfall product that incorporates data from satellites and observations.
NASA estimates heavy rainfall in Hurricane Dorian
Hurricane Dorian is packing heavy rain as it moves toward the Bahamas as predicted by NOAA's NHC or National Hurricane Center.
NASA looks at Barry's rainfall rates
After Barry made landfall as a Category 1 hurricane, NASA's GPM core satellite analyzed the rate in which rain was falling throughout the storm.
NASA looks at Tropical Storm Barbara's heavy rainfall
Tropical Storm Barbara formed on Sunday, June 30 in the Eastern Pacific Ocean over 800 miles from the coast of western Mexico.
NASA looks at Tropical Storm Fani's rainfall rates
Tropical Storm Fani formed in the Northern Indian Ocean over the weekend of April 27 and 28, 2019.
Changes in rainfall and temperatures have already impacted water quality
Changes in temperature and precipitation have already impacted the amount of nitrogen introduced into US waterways.
NASA looks at Tropical Storm Funani's rainfall
Tropical Storm Funani (formerly classified as 12S) continued to affect Rodrigues Island in the South Pacific Ocean when the GPM satellite passed overhead and analyzed its rainfall.
Rainfall extremes are connected across continents: Nature study
Extreme rainfall events in one city or region are connected to the same kind of events thousands of kilometers away, an international team of experts finds in a study now published in one of the world's leading scientific journals, Nature.
Extreme rainfall events are connected across the world
An analysis of satellite data has revealed global patterns of extreme rainfall, which could lead to better forecasts and more accurate climate models.
More Rainfall News and Rainfall Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab