Nav: Home

Story tips from the Department of Energy's Oak Ridge National Laboratory, January 2017

January 04, 2017

SUPERCONDUCTIVITY - Crystal clear conclusion ...

Hundreds of tables and plots from papers published about superconductivity are the focus of a Journal of Physics: Condensed Matter review paper that condenses this data into a single graph. "We were able to find a pattern throughout many scientists' work that was never recognized because no one had taken the time to assemble all of the data," said co-author Lance Konzen. He and ORNL's Athena Safa Sefat conclude that superconducting properties of iron- and copper-based materials are highly dependent on the behavior of atomic arrangements inside the unit cells. They noted that their paper, titled "Lattice Parameters Guide Superconductivity in Iron-Arsenides," is a resource that will guide materials chemists and could save considerable time. Konzen's work was sponsored by the Department of Energy's Workforce Development for Teachers and Scientists and the Science Undergraduate Laboratory Internship programs. [Contact: Ron Walli, (865) 576-0226;]


Cutline: Atomic arrangements inside the unit cell of an iron-based superconducting material show that reduction of unit cells along the c-axis is necessary for causing superconductivity.

ENVIRONMENT - Triple benefit ...

Strategic thinning of forests in the Pacific Northwest and other parts of the United States plagued by fires could produce benefits on multiple levels, according to Rebecca Novello, a researcher at Oak Ridge National Laboratory. In a collaboration with Pacific Northwest National Laboratory and the Forest Service, Novello and Yetta Jager are developing decision support tools for thinning forest understory that could provide biomass for energy, decrease the incidence of high-intensity wildfires and preserve habitat for threatened and endangered salmon. "Climate change is a big driver of this research," Jager said. "Among many other factors, increasing temperatures have shifted seasonal patterns of flow from those that salmon have adapted to and increased the number and duration of wildfires." The three-year project began Oct. 1. [Contact: Ron Walli, (865) 576-0226;]


Cutline: Habitats of salmon could be preserved through the careful management of forests.

COMPUTING - Charting new territory ...

From machine learning to neuromorphic architectures that enable greater computing flexibility and utility, Oak Ridge National Laboratory researchers are pushing boundaries with Titan. "We're using deep learning to advance the state of the art in several challenging fields such as computer vision and speech recognition," said Steven Young, a member of ORNL's Intelligent Computing Research Team. Young noted that their approach is providing a promising tool in areas previously unexplored by computer scientists. For example, optimal networks for commercial datasets are vastly different than the optimal networks for scientific data. But by utilizing the 18,688 GPUs on Titan and an evolutionary algorithm, researchers can quickly find the best network for their problem. As a result, scientists are seeing and making sense of data that was previously either obscured or simply unavailable for analysis. [Contact: Ron Walli, (865) 576-0226;]


Cutline: Oak Ridge National Laboratory's supercomputer is opening new horizons for the Nature Inspired Machine Learning Team.

MATERIALS - Measuring and manipulating graphene ...

Researchers at Oak Ridge National Laboratory found a simpler way to measure adhesion between graphene sheets, compared to a sophisticated method used in a 2015 study: They measured how much graphene deflects when neon atoms poke it from below to create "bubbles." Each bubble's curvature encodes properties such as sheet flexibility and adhesion. "We discovered a new method to measure adhesion of layered materials at very small length scales," said Petro Maksymovych. "It's a simple way to probe a large number of two-dimensional materials and ask how their mechanical properties vary with modifications. It also opens an avenue for atomic-scale control over 2D materials without defects, which may prove useful to achieve their full potential in future technologies." Stacking atomically thin materials opens a pathway toward new energy and electronic applications. [Contact: Dawn Levy, (865) 576-6448;]


Cutline: Neon atoms between graphene sheets poke the top sheet from below and stretch the crystalline lattice, forming a bubble at a pressure larger than that of the ocean at its greatest depth. The ORNL method can introduce large local strains into 2D lattices in cases where conventional methods fail.

SUPERCOMPUTING - Resolving the bottleneck ...

Scientists at Oak Ridge National Laboratory have proposed a novel cryogenic, or low-temperature, memory cell circuit design that may resolve a memory storage bottleneck, accelerating the pathway to exascale and quantum computing. The proposed design converges write, read and reset memory operations on the same circuit, enabling memory processing functions to operate faster and more efficiently. This could yield decreased access energies and access times and allow for more circuits to occupy less space. Details of the research were published in Superconductor Science and Technology and Physical Review E. [Contact: Sara Shoemaker, (865) 576-9219;]


Cutline: ORNL scientists studied ways to enhance the proposed memory cell performance and minimize access times and energies, yielding a novel cryogenic, or low-temperature, design that may resolve a memory storage bottleneck, accelerating a pathway to next-generation computing.

DOE/Oak Ridge National Laboratory

Related Superconductivity Articles:

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.
A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution.
New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.
Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.
How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.
New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.
Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.
Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.
First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
More Superconductivity News and Superconductivity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.