Nav: Home

Evolving deep brain stimulation patterns

January 04, 2017

DURHAM, N.C. -- Duke University biomedical engineers have used computers to "evolve" more effective patterns of electric shocks delivered deep within the brain to treat Parkinson's disease symptoms.

The new energy-saving patterns could reduce the number of battery replacement surgeries needed during a patient's lifetime and lead to patterns tailored to treat specific symptoms.

First introduced in 1987, deep brain stimulation sends electrical pulses deep into the brains of people suffering from neurological motor control diseases through wires implanted into an area of the brain called the basal ganglia. Stimulation greatly improves motor function in many patients, though the reasons why remain unclear.

While trying to understand the basic mechanisms involved, Duke engineers discovered that timing patterns of deep brain stimulation became less effective as they became more random. This implied that there might be non-random patterns that work better than a constant barrage of pulses. Over the past few years, the team has serendipitously discovered several such patterns.

Now, the Duke researchers have built an evolutionary computer algorithm to more purposefully design effective patterns. In a new study with human patients, the program developed a pattern that cuts stimulator energy usage by up to 75 percent while losing none of the treatment's benefits. With a greater understanding of the neural activity that gives rise to specific symptoms, the algorithm could design patterns tailored to each person's needs.

The results appear online on Jan. 4, 2017, in the journal Science Translational Medicine.

"Cutting energy use is important because when these devices' primary cell batteries run out, they have to be replaced through a surgical procedure," said Warren Grill, the Edmund T. Pratt Jr. School Professor of Biomedical Engineering. "Besides being expensive, studies have shown that that there is a 2 to 3 percent chance of infection, which goes up each time the procedure is done. And because these batteries only last three to five years, someone receiving an implant at age 50 could undergo many procedures in a lifetime."

Grill and his colleagues developed timing patterns by splitting each second of electrical pulses into five segments, which they further divided into 200 individual slices. Each segment formed one repetition of a pattern, with each millisecond-long slice randomly receiving a pulse or a blank. With that number of slices and no further restrictions, however, the researchers faced one hundred quindecillion possible patterns. (That's a 1 with 50 zeroes after it -- far too many to test experimentally in a laboratory.)

To pick the most promising patterns out of this impossibly large haystack, the team turned to computational evolution.

"The method works very similarly to biological evolution, but it occurs inside of a computer," said Grill. "In our world, instead of a giraffe's neck getting longer to reach higher leaves, the positions of electric pulses change so that the pattern gets better over time."

The evolutionary algorithm begins by randomly creating 10 patterns of deep brain stimulation and testing them in a computational model of Parkinson's disease. The better a pattern performs, the more likely it is to "parent" a new pattern. In each generation, the computer introduces random mutations into the offspring as well as new "immigrant" patterns to keep the "gene pool" fresh. After thousands of iterations, a new, highly efficient pattern is born.

In this case, the algorithm evaluated the patterns on two measures -- efficiency and effectiveness. By weighting the two appropriately, the computer evolved patterns that used the least amount of energy while maintaining performance just as good as a standard, constant stream of pulses.

The pattern that emerged used an average of only 45 pulses per second -- a large reduction from the standard 130 to 185 used currently. That's an energy savings of 60 to 75 percent, which could double or triple the lifetime of the implanted battery.

After receiving encouraging results from testing the pattern in rats with Parkinson's-like symptoms, Grill decided to test it in humans.

"But modern deep brain stimulation devices can't deliver the patterns we're developing," said Grill. "So we had to come up with an innovative approach."

In collaboration with neurosurgeons at Duke Health and Emory Healthcare in Atlanta, Grill and his team recruited Parkinson's patients with deep brain stimulation implants to test the pattern when they came in for surgical battery replacements. Patients received only local anesthesia during the surgical procedure, retaining control over many motor functions so researchers could assess their symptoms. In between the removal and installation of the new and old batteries, the researchers temporarily connected their test devices to each patient's implanted brain lead to test the new pattern.

The computationally evolved pattern performed just as well as the individually optimized treatments developed by each patient's neurologist over the course of many years, while requiring substantially less energy.

Although it's not yet clear how this abnormal neural activity produces Parkinsonian symptoms--nor exactly how deep brain stimulation is interrupting the oscillations--the study still may provide enough data to bring new relief to patients.
-end-
This research was supported by the National Institutes of Health, including a Javits Neuroscience Investigator Award to Grill to provide long-term support to investigators with a history of exceptional talent, imagination and preeminent scientific achievement (R01-NS040894, R37-NS040894, R01-NS079312).

"Optimized temporal pattern of brain stimulation designed by computational evolution." David T. Brocker, Brandon D. Swan, Rosa Q. So, Dennis A. Turner, Robert E. Gross, Warren M. Grill. Science Translational Medicine, 2016. DOI: 10.1126/scitranslmed.aah3532.

Duke University

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.