Nav: Home

Researcher's discovery of new crystal structure holds promise for optoelectronic devices

January 04, 2017

TALLAHASSEE, Fla. -- A Florida State University research team has discovered a new crystal structure of organic-inorganic hybrid materials that could open the door to new applications for optoelectronic devices like light-emitting diodes and lasers.

The research was published today in the journal Nature Communications.

Associate Professor of Chemical and Biomedical Engineering Biwu Ma has been working with a class of crystalline materials called organometal halide perovskites for the past few years as a way to build highly functioning optoelectronic devices. In this most recent work, his team assembled organic and inorganic components to make a one-dimensional structure.

"The basic building block of this class of materials is the same, like a Lego piece, with which you can assemble different structures," Ma said.

These Lego-like pieces, scientifically called metal halide octahedra, can form 3D networks, 2D layers, or even 1D chains. While 3D and 2D structures have been extensively explored, 1D structures are rare. Ma's team found a way to put these pieces together in a chain, which is surrounded by organic pieces to form a core-shell type wire. Millions of the organic-coated wires then stack together to form a crystalline bundle. From a distance these structures look like crystal needles.

It is the first time scientists have observed these hybrid materials forming a crystal structure like this.

This crystal displays very interesting optical properties, Ma said. For example, it is highly photo luminescent, which scientists can manipulate moving forward as they use it for different technologies.

Hybrid metal halide perovskites have received increased attention in recent years for their potential applications in various types of photon-related technologies such as photovoltaic cells, LEDS and lasers. This new study takes that work one step further by showing that this 1D structure could be another efficient form to produce bright light.

"They are good light emitters," Ma said. "This research tells us we have the capabilities to develop new structures and these materials have great opportunities for practical applications for devices like LEDs or lasers."

Ma came to FSU as part of the Energy and Materials Strategic Initiative with a mission of producing high-tech materials for next generation, energy sustainable technology.

His work is supported through the Energy and Materials Initiative and collaborators at the FSU-based National High Magnetic Field Laboratory where some of the experiments were conducted.

Ma's co-authors on the paper are FSU professors Ronald Clark from the Department of Chemistry and Theo Siegrist from the FAMU-FSU College of Engineering; FSU research faculty Yan Xin and Lambertus van de Burgt; postdoctoral researcher Zhao Yuan; FSU graduate students Chenkun Zhou, Yu Tian, Yu Shu, Joshua Messier, Jamie Wang and Konstantinos Kountouriotis; and University of Florida Professor Kirk Schanze and UF graduate student Ethan Holt.

Florida State University

Related Crystal Structure Articles:

4D imaging with liquid crystal microlenses
Most images captured by a camera lens are flat and two dimensional.
Solution of the high-resolution crystal structure of stress proteins from Staphylococcus
One of the main factors favoring a microorganism's survival in extreme conditions is preserving ribosomes -- a macromolecular complex comprising RNA and proteins
A laser, a crystal and molecular structures
Researchers have built a new tool to study molecules using a laser, a crystal and light detectors.
A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
Crystal clear: Understanding magnetism changes caused by crystal lattice expansion
An international team including researchers from Osaka University demonstrated helimagnetic behavior in a cubic perovskite material by expanding the lattice through barium doping.
Capturing the surprising flexibility of crystal surfaces
Images taken using an atomic force microscope have allowed researchers to observe, for the first time, the flexible and dynamic changes that occur on the surfaces of 'porous coordination polymer' crystals when guest molecules are introduced.
How a crystal is solvated in water
How a molecule from a solid crystal structure is solvated in a liquid solvent has been observed at a molecular level for the first time by chemists at Ruhr-Universität Bochum.
Nature-inspired crystal structure predictor
Scientists from Russia found a way of improving the crystal structure prediction algorithms, making the discovery of new compounds multiple times faster.
Modeling crystal behavior: Towards answers in self-organization
The University of Tokyo Institute of Industrial Science researchers have created a model to explore the transition behavior of crystal lattices.
Crystal structure reveals how curcumin impairs cancer
Through x-ray crystallography and kinase-inhibitor specificity profiling, University of California San Diego School of Medicine researchers, in collaboration with researchers at Peking University and Zhejiang University, reveal that curcumin, a natural occurring chemical compound found in the spice turmeric, binds to the kinase enzyme dual-specificity tyrosine-regulated kinase 2 (DYRK2) at the atomic level.
More Crystal Structure News and Crystal Structure Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab