Researcher's discovery of new crystal structure holds promise for optoelectronic devices

January 04, 2017

TALLAHASSEE, Fla. -- A Florida State University research team has discovered a new crystal structure of organic-inorganic hybrid materials that could open the door to new applications for optoelectronic devices like light-emitting diodes and lasers.

The research was published today in the journal Nature Communications.

Associate Professor of Chemical and Biomedical Engineering Biwu Ma has been working with a class of crystalline materials called organometal halide perovskites for the past few years as a way to build highly functioning optoelectronic devices. In this most recent work, his team assembled organic and inorganic components to make a one-dimensional structure.

"The basic building block of this class of materials is the same, like a Lego piece, with which you can assemble different structures," Ma said.

These Lego-like pieces, scientifically called metal halide octahedra, can form 3D networks, 2D layers, or even 1D chains. While 3D and 2D structures have been extensively explored, 1D structures are rare. Ma's team found a way to put these pieces together in a chain, which is surrounded by organic pieces to form a core-shell type wire. Millions of the organic-coated wires then stack together to form a crystalline bundle. From a distance these structures look like crystal needles.

It is the first time scientists have observed these hybrid materials forming a crystal structure like this.

This crystal displays very interesting optical properties, Ma said. For example, it is highly photo luminescent, which scientists can manipulate moving forward as they use it for different technologies.

Hybrid metal halide perovskites have received increased attention in recent years for their potential applications in various types of photon-related technologies such as photovoltaic cells, LEDS and lasers. This new study takes that work one step further by showing that this 1D structure could be another efficient form to produce bright light.

"They are good light emitters," Ma said. "This research tells us we have the capabilities to develop new structures and these materials have great opportunities for practical applications for devices like LEDs or lasers."

Ma came to FSU as part of the Energy and Materials Strategic Initiative with a mission of producing high-tech materials for next generation, energy sustainable technology.

His work is supported through the Energy and Materials Initiative and collaborators at the FSU-based National High Magnetic Field Laboratory where some of the experiments were conducted.

Ma's co-authors on the paper are FSU professors Ronald Clark from the Department of Chemistry and Theo Siegrist from the FAMU-FSU College of Engineering; FSU research faculty Yan Xin and Lambertus van de Burgt; postdoctoral researcher Zhao Yuan; FSU graduate students Chenkun Zhou, Yu Tian, Yu Shu, Joshua Messier, Jamie Wang and Konstantinos Kountouriotis; and University of Florida Professor Kirk Schanze and UF graduate student Ethan Holt.

Florida State University

Related Crystal Structure Articles from Brightsurf:

Getting single-crystal diamond ready for electronics
Researchers from Osaka University and collaborating partners polished single-crystal diamond to near-atomic smoothness without damaging it.

Crystal structure of SARS-CoV-2 papain-like protease
The pandemic of coronavirus disease 2019 (COVID-19) is changing the world like never before.

Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites
Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites.

Photonic crystal light converter
Spectroscopy is the use of light to analyze physical objects and biological samples.

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution
Solar energy researchers are shining their scientific spotlight on materials with a crystal structure discovered nearly two centuries ago.

Crystal wars
Scientists at The University of Tokyo and Fudan University researched the process of crystallization in which competing structural forms coexist.

Melting a crystal topologically
Physicists at EPFL have successfully melted a very thin crystal of magnetic quasi-particles controllably, as turning ice into water.

The makings of a crystal flipper
Hokkaido University scientists have fabricated a crystal that autonomously flips back and forth while changing its flipping patterns in response to lighting conditions.

Crystal power
Scientists at the US Department of Energy's Argonne National Laboratory have created and tested a single-crystal electrode that promises to yield pivotal discoveries for advanced batteries under development worldwide.

Pressing 'pause' on nature's crystal symmetry
From snowflakes to quartz, nature's crystalline structures form with a reliable, systemic symmetry.

Read More: Crystal Structure News and Crystal Structure Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to