Study suggests route to improve artery repair

January 04, 2017

BOSTON - (January 4, 2017) - People with any form of diabetes are at greater risk of developing cardiovascular conditions than people without the disease. Moreover, if they undergo an operation to open up a clogged artery by inserting a "stent" surgical tube, the artery is much more likely to clog up again. However, researchers at Joslin Diabetes Centers now have uncovered an explanation for why these procedures often fail, which may lead toward better alternatives.

An enzyme known as SHP-1, which can suppress the growth of smooth muscle cells lining the inside of blood vessels, plays a crucial role in stent failure, says George King, M.D., Joslin's Chief Scientific Officer and senior author on a paper in the journal Diabetologia describing the work.

Stents coated with a drug that activates SHP-1, and thus slows the accelerated growth of these vascular cells, might help in treating arterial disease in diabetes, says King, who is also Professor of Medicine at Harvard Medical School.

His team's research began with experiments among mice fed a high-fat diet and rats that were genetically modified to display insulin resistance and related metabolic conditions related to diabetes. "We found that SHP-1 expression was decreased in the arteries from all of these animal models," says Weier (Glorian) Qi, co-lead author on the paper. "We also found that SHP-1 expression dropped in the arteries of patients with type 2 diabetes."

Next, the scientists created mice that were genetically engineered to over-express the protein in their vascular smooth muscle cells. When the scientists fed these mice a high-fat diet that clogged their arteries and performed a procedure similar to stent insertion, they found that the arteries in these animals were less clogged than in normal mice given the same procedure.

The researchers went on to demonstrate that SHP-1 is reduced in mouse vascular smooth muscle cells primarily by the high levels of lipids in the blood associated with diabetes and related conditions, rather than the high levels of glucose also present in those conditions.

Following up on these findings may help to address a major research puzzle in diabetic complications, says King: Each type of tissue seems to react differently to the disease.

For example, he explains, smooth muscle cells grow thicker in large blood vessels like arteries, but similar type of contractile cells begin to die off in tiny blood vessels in the eye.

"These opposite cell growth patterns are an enigma," King comments. "They also make it difficult to develop therapeutics, because we would want to deactivate SHP-1 in the eye and activate it in large arteries."

Surgical stents for artery repair are typically coated with slow-releasing drugs that aim to suppress excessive regrowth of the surrounding smooth muscle cells. This approach to release drugs locally might work for drugs that boost SHP-1 expression, King speculates.

"We hope our research encourages ideas about how to address this problem for people with diabetes," he adds. ""The more ideas that come up, the greater the chances that we can achieve such a needed treatment."

Joslin's Qian Li1 was the other co-lead author on the paper. Joslin contributors also included Christian Rask-Madsen, Samuel Lockhart, Yu Xia, Xuanchun Wang and Mogher Khamaisi. Chong Wee Liew of the University of Illinois at Chicago; Lars Melholt Rasmussen of Odense University Hospital in Odense, Denmark; and Kevin Croce of Brigham and Women's Hospital also were co-authors. Lead research support came from the JDRF, the American Diabetes Association and the National Institute of Diabetes and Digestive and Kidney Diseases.
-end-
About Joslin Diabetes Center

Joslin Diabetes Center is world-renowned for its deep expertise in diabetes treatment and research. Joslin is dedicated to finding a cure for diabetes and ensuring that people with diabetes live long, healthy lives. We develop and disseminate innovative patient therapies and scientific discoveries throughout the world. Joslin is an independent, non-profit institution affiliated with Harvard Medical School, and one of only 11 NIH-designated Diabetes Research Centers in the U.S.

For more information, please visit http://www.joslin.org

Joslin Diabetes Center

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.