Nav: Home

Feature issue on nonlinear optics provides insight into field's latest ideas

January 04, 2017

A large number of researchers are working in the area of nonlinear optics, which is the study of all effects that can be described as multi-photon interactions in various materials systems, including cases where the frequency of one or more photons tends to zero. Motivated by the needs of these researchers, meetings have sprung up over the past few years under the name "Foundations of Nonlinear Optics." The two most recent of these meetings took place at Lehigh University in 2015, and at Tufts University in 2016, and the next one will take place at the University of Bahamas.

Now, a special feature of The Journal of the Optical Society of America B has been published with contributions from several of the participants in these meetings, as well as others. The issue is called Nonlinear optics near the fundamental limit and it contains articles ranging from the fundamental, first principles analysis of the nonlinear response and its origins, to experimental work. It is edited by Timothy J. Atherton of Tufts University, Ivan Biaggio of Lehigh University, and Koen Clays of KU Leuven, Belgium.

According to the issue's introduction: "This feature issue is dedicated to works on both second-order nonlinear optics (three-photon interactions) and third-order nonlinear optics (four-photon interactions) that focus on understanding the fundamental mechanisms of the nonlinear optical response when the nonlinearity is large and approaches the fundamental quantum limit--a regime required by applications and characterized by interesting physics."

Co-editor Biaggio, a professor in Lehigh's Department of Physics says: "The whole feature issue is about looking for new ways to understand and optimize the ability of certain materials to mediate light-light interaction. Examples are two photons of the same frequency combining to create one at twice the frequency--known as second harmonic generation--or three photons combining to produce a fourth one--which could potentially lead to things like optical transistors."

An article from Biaggio's research group--titled "Optimum conjugation length in donor-acceptor molecules for third-order nonlinear optics"--is also included in the feature issue. The study builds on the team's previous research that demonstrated record-high performance for individual molecules and developed a new way to use those molecules to fabricate high quality solid state materials--materials that have then been used to add nonlinear optical functionality to standard integrated optics circuitry.

Biaggio says that studying how the nonlinear optical efficiency is maintained when making the molecules larger is important because increasing molecular size is one of the ways used to increase the strength of the effects that lead to multi-photon interactions. The team had previously noted that by adding special groups to a small molecule--called donor and acceptor groups--it is possible to keep the molecule close to those record-high values in efficiency. But, he says, this can only work when the molecules do not get too large.

"This article provides the first look into how making organic molecules longer--by adding more carbon atoms to a chain of carbon atoms--influences their ability to mediate multi-photon interactions for all-optical switching, and how that ability depends on the wavelength of the photons," says Biaggio.

He adds: "In this study, we have finally determined experimentally how far one can go in making the molecule larger while still enjoying the benefits of donor-acceptor substitution."
-end-
The research published by Biaggio and his colleagues is supported by a grant from the National Science Foundation.

Lehigh University

Related Photons Articles:

The multi-colored photons that might change quantum information science
With leading corporations now investing in highly expensive and complex infrastructures to unleash the power of quantum technologies, INRS researchers have achieved a breakthrough in a light-weight photonic system created using on-chip devices and off-the-shelf telecommunications components.
*Ring, Ring* 'Earth? It's space calling, on the quantum line'
In a landmark study, Chinese scientists report the successful transmission of entangled photons between suborbital space and Earth.
Unpolarized single-photon generation with true randomness from diamond
The Tohoku University research group of Professor Keiichi Edamatsu and Postdoctoral fellow Naofumi Abe has demonstrated dynamically and statically unpolarized single-photon generation using diamond.
Solar cell design with over 50 percent energy-conversion efficiency
Solar cells convert the sun's energy into electricity by converting photons into electrons.
'Indistinguishable photons' key to advancing quantum technologies
Indistinguishable photons are critical for quantum information processing, and researchers are tapping nitrogen impurity centers found within gallium arsenide to generate them -- making a significant contribution toward realizing a large number of indistinguishable single-photon sources.
More Photons News and Photons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...