Nav: Home

Feature issue on nonlinear optics provides insight into field's latest ideas

January 04, 2017

A large number of researchers are working in the area of nonlinear optics, which is the study of all effects that can be described as multi-photon interactions in various materials systems, including cases where the frequency of one or more photons tends to zero. Motivated by the needs of these researchers, meetings have sprung up over the past few years under the name "Foundations of Nonlinear Optics." The two most recent of these meetings took place at Lehigh University in 2015, and at Tufts University in 2016, and the next one will take place at the University of Bahamas.

Now, a special feature of The Journal of the Optical Society of America B has been published with contributions from several of the participants in these meetings, as well as others. The issue is called Nonlinear optics near the fundamental limit and it contains articles ranging from the fundamental, first principles analysis of the nonlinear response and its origins, to experimental work. It is edited by Timothy J. Atherton of Tufts University, Ivan Biaggio of Lehigh University, and Koen Clays of KU Leuven, Belgium.

According to the issue's introduction: "This feature issue is dedicated to works on both second-order nonlinear optics (three-photon interactions) and third-order nonlinear optics (four-photon interactions) that focus on understanding the fundamental mechanisms of the nonlinear optical response when the nonlinearity is large and approaches the fundamental quantum limit--a regime required by applications and characterized by interesting physics."

Co-editor Biaggio, a professor in Lehigh's Department of Physics says: "The whole feature issue is about looking for new ways to understand and optimize the ability of certain materials to mediate light-light interaction. Examples are two photons of the same frequency combining to create one at twice the frequency--known as second harmonic generation--or three photons combining to produce a fourth one--which could potentially lead to things like optical transistors."

An article from Biaggio's research group--titled "Optimum conjugation length in donor-acceptor molecules for third-order nonlinear optics"--is also included in the feature issue. The study builds on the team's previous research that demonstrated record-high performance for individual molecules and developed a new way to use those molecules to fabricate high quality solid state materials--materials that have then been used to add nonlinear optical functionality to standard integrated optics circuitry.

Biaggio says that studying how the nonlinear optical efficiency is maintained when making the molecules larger is important because increasing molecular size is one of the ways used to increase the strength of the effects that lead to multi-photon interactions. The team had previously noted that by adding special groups to a small molecule--called donor and acceptor groups--it is possible to keep the molecule close to those record-high values in efficiency. But, he says, this can only work when the molecules do not get too large.

"This article provides the first look into how making organic molecules longer--by adding more carbon atoms to a chain of carbon atoms--influences their ability to mediate multi-photon interactions for all-optical switching, and how that ability depends on the wavelength of the photons," says Biaggio.

He adds: "In this study, we have finally determined experimentally how far one can go in making the molecule larger while still enjoying the benefits of donor-acceptor substitution."
-end-
The research published by Biaggio and his colleagues is supported by a grant from the National Science Foundation.

Lehigh University

Related Photons Articles:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.
Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.
Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.
The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.
Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.
The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Producing single photons from a stream of single electrons
Researchers at the University of Cambridge have developed a novel technique for generating single photons, by moving single electrons in a specially designed light-emitting diode (LED).
More Photons News and Photons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.