Nav: Home

Scientists learn how to ramp up microbes' ability to make memories

January 04, 2017

Some microbes can form memories--although, inconveniently for scientists who study the process, they don't do it very often.

Rockefeller University researchers and their colleagues at the University of California, Berkeley, have found a way to make bacteria encode memories much more frequently. Their discovery was described December 22 in Molecular Cell.

"CRISPR, the adaptive immune system found within many bacteria, remembers viruses by storing snippets of their DNA. But in nature, these recording events happen only rarely," says senior author Luciano Marraffini, head of the Laboratory of Bacteriology.

"We have identified a single mutation that causes bacterial cells to acquire genetic memories of viruses 100 times more frequently than they do naturally," he adds. "This mutation provides a powerful tool for experiments in our lab and elsewhere, and could facilitate the creation of DNA-based data storage devices."

If a virus that a bacterium's CRISPR system has recorded shows up again, an enzyme known as Cas9 is dispatched to destroy it. The system's precision has already made it an important tool for editing genomes, and scientists are looking toward other potential applications.

For the current study, the team randomly introduced mutations into the gene for Cas9 and found that one of them prompts bacteria to acquire genetic memories more readily. Under normal conditions, if researchers expose 100,000 bacterial cells to the same potentially deadly virus, only one will typically acquire a DNA snippet that could enable it to survive a future attack. In cells engineered to carry this new mutation, the ratio increases to one in 1,000.

The mutation quickly became useful to nearly all of the projects going on in Marraffini's lab. Working with microbes whose genetic memories have been enhanced this way, the scientists are able to generate much more data about various aspects of CRISPR.

There may be other applications, though some are far off on the horizon. Some synthetic biologists--scientists who design and build novel biological machines--think a CRISPR-like system could be adapted to capture information about the activity of neurons, how cells respond to environmental stimuli, or the trajectory of metastasizing cancer cells. Although many hurdles remain for the development of a CRISPR-based recording system, this mutation could potentially make it more realistic, the researchers say.

The discovery also raises a question: If this mutation makes bacteria more capable of defending themselves, why haven't they evolved to carry it naturally? "There is a trade-off with CRISPR," explains first author Robert Heler, a graduate student in the lab. Although the system defends cells, it can sometimes misfire by acquiring DNA snippets from its host rather than from an invading virus, leading the cell to kill itself. "Unless they are beseiged by an exceedingly high volume of viruses that require a potent CRISPR-Cas defense, microbes without the mutation have a survival advantage because they are less prone to this type of suicide," Heler says.
-end-


Rockefeller University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...