Nav: Home

Green chemistry: Au naturel catalyst mimics nature to break tenacious carbon-hydrogen bond

January 04, 2017

A new catalyst for breaking the tough molecular bond between carbon and hydrogen holds the promise of a cleaner, easier and cheaper way to derive products from petroleum, says a researcher at Southern Methodist University, Dallas.

"Some of the most useful building blocks we have in the world are simple, plentiful hydrocarbons like methane, which we extract from the ground. They can be used as starting materials for complex chemical products such as plastics and pharmaceuticals," said Isaac Garcia-Bosch, Harold A. Jeskey Endowed Chair assistant professor in the Department of Chemistry at SMU. "But the first step of the process is very, very difficult -- breaking that carbon-hydrogen bond. The stronger the bond, the more difficult it is to oxidize."

The chemical industry must break the tenacious bond between carbon and hydrogen molecules to synthesize oxidative products such as methanol and phenols. It's called oxidizing because it causes the molecule to undergo a reaction in which it combines with oxygen, breaking C-H bonds and forming new carbon-oxygen bonds.

The conventional chemical recipe calls for inefficient and expensive oxidants to break the C-H bond. That process is costly, difficult and leaves behind dirty waste products.

Chemists at SMU, in collaboration with The Johns Hopkins University, have found a cheaper, cleaner way to crack the stubborn C-H bond.

Garcia-Bosch and chemist Maxime A. Siegler, director of the X-ray Crystallography Facility at The Johns Hopkins University, used copper catalysts that in combination with hydrogen peroxide (oxygen source) can convert C-H bonds to C-O bonds.

"This is a very important discovery because it's the first time it's been proven that copper can carry out this kind of oxidation outside of nature in an efficient way," Garcia-Bosch said. "The prep is very simple, so labs anywhere can do it. Copper is relatively cheap compared to other metals such as palladium, gold or silver, and hydrogen peroxide is readily available, relatively cheap and very clean. One of the byproducts of oxidations with hydrogen peroxide (H2O2) is water (H2O), which is the cleanest waste product you could have."

Additionally, the researchers found the right ligand -- a nitrogen-based material that binds to the copper so that the oxidation process can occur with close to perfect efficiency.

It's important to have the right ligand, the right amount of hydrogen peroxide, and the right metal in order to oxidize these challenging C-H bonds.

"We found that combination," Garcia-Bosch said.

Chemistry is like a puzzle, where you build new molecules out of other molecules, he said.

In any one molecule there are many C-H bonds. For example in octanes, such as the ones found in gasoline, there's a carbon chain of eight carbons with multiple C-H bonds with different chemical properties, Garcia-Bosch said, and from the oxidation of each of the C-H bonds, a different product results.

Chemists design catalysts that are capable of breaking and forming bonds in order to build complex chemical structures.

"Catalysts have to be able to select between different C-H bonds and form new carbon-oxygen, carbon-nitrogen or carbon-fluoride bonds, for example," Garcia-Bosch said. "Biological processes use metals to do this all the time, for example in our bodies when our liver processes a pharmaceutical that we ingest using iron. Minerals such as iron, copper, manganese, calcium and potassium are critical for the natural catalytic process. For example, trees use manganese (photosynthesis) to transform water into the oxygen that we breathe"

Garcia-Bosch and Siegler reported their findings in the article "Copper-Catalyzed Oxidation of Alkanes with H2O2 under a Fenton-like Regime," published in the international edition of the journal Angewandte Chemie.

First time for using copper for C-H oxidation

In organic chemistry, there aren't many examples of copper as a catalyst for carbon-hydrogen oxidation. Most examples are based on iron.

"This is the first time in our field that we've used copper to do this C-H oxidation in a very efficient way," Garcia-Bosch said.

"Copper is very versatile in nature," he said. "With small changes in the environment of copper, you can do very diverse chemistry. That's why we picked it."

That environment is the ligand, which gives properties to the copper to spark the chemical reaction when the chemical ingredients are combined in a vial or round bottom flask.

The researchers discovered that these catalysts -- copper in the form of a white salt and the ligand as an oil -- can oxidize C-H bonds in a very efficient way in combination with hydrogen peroxide, a reduced form of oxygen that nature uses.

"You can find hydrogen peroxide anywhere, even at home in your medicine cabinet. So it's a mild oxidant," Garcia-Bosch said. "It's convenient also, because it's a liquid, rather than, say, a gas, which might require special storage. You mix everything together in a solvent and it reacts. It's like making a soup, a recipe, then you analyze the result to see what you get."

Using a gas chromatography instrument, the Garcia-Bosch and Siegler analyzed the final solution to observe the results of the reaction. That allowed them to quantify the amount of oxidation product that was formed during the reaction.

Next step -- targeting a specific C-H bond

"We tested this catalytic system for different substrates and we saw that it's not very selective," Garcia-Bosch said. "That's a problem. So if we have molecules that have many different C-H bonds, then it's going to oxidize all of them in a non-selective manner. In our lab, we would like to find selective catalysts. That's the next project."
-end-


Southern Methodist University

Related Hydrogen Articles:

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.
Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.
Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.
Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
More Hydrogen News and Hydrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.