Researchers discover new mechanism for Type IV pili retraction in Vibrio cholerae

January 04, 2017

Type IV pili, essential for many pathogens to cause disease, are hair-like appendages that grow out of and are retracted back into bacteria cells, enabling them to move and adhere to surfaces. Although pathogenic bacteria often rely on a specialized molecular motor to retract their pili, a new study in PLOS Pathogens reveals that a minor pilin protein elicits pilus retraction in the cholera bacterium, Vibrio cholerae.

Bacteria utilize a number of highly sophisticated molecular tools to colonize their hosts. One of the most ubiquitous is a complex nanomachine called the Type IV pilus. This nanomachine has as few as 10 to as many as 30 molecular components, producing exquisitely thin filaments that extend from the bacterial surface and that can be several times the length of the bacteria itself. These pilus filaments have a remarkable array of functions that rely on their ability to (i) adhere to many substrates, including host cell surfaces, pili from nearby bacteria, DNA and bacterial viruses (bacteriophage), and (ii) to depolymerize or retract, which pulls the bacteria along mucosal surfaces, pulls them close together in protective aggregates, and can even draw in substrates like DNA and bacteriophage for nutrition and genetic variation.

In collaboration with researchers from Dartmouth College and Simon Fraser University, Dr. Nicolas Biais, Assistant Professor of Biology at Brooklyn College, City University of New York (CUNY), developed an assay in his laboratory that revealed for the first time the V. cholerae Type IV pilus can retract without this molecular motor, and that retraction is necessary for these pili to function. Instead of a molecular motor, a small minor pilin protein triggers pilus retraction. "The magnitude of the forces though is much smaller," said Dr. Biais. "If Neisseria gonorrhoeae can pull roughly 100,000 times its bodyweight, Vibrio cholerae barely makes it to 1,000 times of its bodyweight. This is a new mechanism for retraction that will help understand how other pili and closely related secretion systems can work and potentially help with the design of novel antibiotics."

"This report [...] demonstrates that the bacterium that causes cholera powers a nanomachine required for infection differently than other disease causing bacteria," said Dr. Hank Seifert, Professor of Biomedical Sciences at Feinberg School of Medicine, Northwestern University, who was not involved with the study. "These findings drastically alter our understanding of how these nanomachines function to provide insights into the mechanisms allowing cholera and the development of synthetic nanomachines."

Research on how Type IV pili function not only advances our understanding of V. cholerae pathogenesis, but will also aid in developing future prevention and treatment strategies for cholera.
-end-
Read the full article at: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006109

The City University of New York is the nation's leading urban public university. Founded in New York City in 1847, the University comprises 24 institutions: 11 senior colleges, seven community colleges, and additional professional schools. The University serves nearly 275,000 degree-credit students and 218,083 adult, continuing and professional education students.

For more information, please contact Shante Booker (shante.booker@cuny.edu) or visit http://www.cuny.edu/research

The City University of New York

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.