Nav: Home

Human neocortical neurons have unique membrane properties that enhance signal processing

January 04, 2017

The human brain's advanced cognitive capabilities are often attributed to our recently evolved neocortex. Comparison of human and rodent brains shows that the human cortex is thicker, contains more white matter, has larger neurons, and its abundant pyramidal cells (formerly called "psychic" neurons) have more synaptic connections per cell as compared to rodents.

However, scientists have yet to determine whether there are important differences at the biophysical level of the basic building blocks of the human neocortex, the pyramidal neurons. Do these cells possess unique biophysical properties that might impact on cortical computations?

To answer this question, a theoretical team led by Prof. Idan Segev from the Hebrew University of Jerusalem, working with experimental colleagues at Vrije Universiteit Amsterdam and Instituto Cajal in Madrid, built detailed 3D models of pyramidal cells from the human temporal neocortex. These first-ever detailed models of human neurons were based on in vitro intracellular physiological and anatomical data from human cells.

(To collect this data, fresh cortical tissue was obtained from brain operations at a neurosurgical department in Amsterdam, and additional data was obtained from light-microscope studies in pyramidal cells from post mortem studies at the Cajal Institute in Madrid.)

The theoretical study predicted that layer 2/3 pyramidal neurons from the human temporal cortex would have a specific membrane capacitance that is half of the commonly accepted "universal" value for biological membranes (~0.5 μF/cm2 vs. ~1 μF/cm2). Since membrane capacitance affects how quickly a cell can respond to its synaptic inputs, this finding has important implications for the transmission of signals within and between cells. The theoretical prediction regarding the specific membrane capacitance was then validated experimentally by direct measurements of membrane capacitance in human pyramidal neurons.

"This is the first direct evidence for the unique electrical properties of human neurons," said researcher Guy Eyal, a Ph.D. student at the Hebrew University's Department of Neurobiology. "Our finding shows that low membrane capacitance significantly improves the efficacy of signal processing and the speed of communication within and between cortical neurons in the human neocortex, as compared to rodents."

"The results of this work imply that human cortical neurons are efficient electrical microchips, compensating for the larger brain and large cells in humans, and processing sensory information more effectively," said Prof. Idan Segev from the Department of Neurobiology and the Edmond and Lily Safra Center for Brain Sciences at the Hebrew University. "Indeed, the study shows that already at the level of the individual building blocks of the nervous system (the nerve cells), humans are distinct as compared to rodents. More research should be performed in this direction on non-human primates."

The researchers suggest the distinctive biophysical membrane properties of human pyramidal neurons are an outcome of evolutionary pressure to compensate for the increase in size and distances in the human brain.
-end-
The research appears in the peer-reviewed journal eLife. Participating institutions include The Hebrew University of Jerusalem, Israel; VU University Amsterdam, The Netherlands; Instituto Cajal, Spain; and Universidad Politécnica de Madrid, Spain.

The Hebrew University of Jerusalem is Israel's leading academic and research institution, producing one-third of all civilian research in Israel. For more information, visit http://new.huji.ac.il/en.

The Hebrew University of Jerusalem

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.