Nav: Home

UNC-Chapel Hill researchers use light to launch drugs from red blood cells

January 04, 2017

Scientists at the University of North Carolina at Chapel Hill have developed a breakthrough technique that uses light to activate a drug stored in circulating red blood cells so that it is released exactly when and where it is needed.

The work, led by Fred Eshelman Distinguished Professor David Lawrence in the Eshelman School of Pharmacy, has profound implications for the field of drug delivery by using red blood cells to carry drugs and then using light to release them in precise locations. The technique, which overcomes a decades-long scientific hurdle, could drastically reduce the amount of a drug needed to treat disease and thus side effects.

"Using light to treat a disease site has a lot of benefits beyond the isn't-that-cool factor," said Lawrence, whose work is published in the journal Angewandte Chemie. "Those benefits could include avoiding surgery and the risk of infection, making anesthesia unnecessary and allowing people to treat themselves by shining a light on a problem area, such as an arthritic knee."

Lawrence and his team attached a drug molecule to vitamin B12 and loaded the compound into red blood cells, which can circulate for up to four months, providing a long-lasting reservoir of medicine that can be tapped as needed. They then demonstrated their ability to overcome a longtime technical hurdle: using long-wavelength light to penetrate deep enough into the body to break molecular bonds; in this case, the drug linked to vitamin B12.

Here's the rub: Long-wavelength light can penetrate much more deeply into the body, but it doesn't carry as much energy as short wavelength light, and cannot typically break molecular bonds. To activate the drug with long-wavelength light, Lawrence and his team had to figure out how to do it in a way that required less energy.

"That's the trick, and that's where we've been successful," said Lawrence.

Lawrence's team solved the energy problem by introducing a weak energy bond between vitamin B12 and the drug and then attached a fluorescent molecule to the bond. The fluorescent molecule acts as an antenna, capturing long wavelength light and using it to cut the bond between the drug and the vitamin carrier.

Lawrence pointed to some complex and deadly cancers where physicians might have a better chance of helping the patient if a wide array of anti-cancer agents could be used.

"The problem is when you start using four or five very toxic drugs you're going to have intolerable side effects," he said. "However, by focusing powerful drugs at a specific site, it may be possible to significantly reduce or eliminate the side effects that commonly accompany cancer chemotherapy."

Lawrence has also created a company in partnership with UNC, Iris BioMed, to further develop the technology to be used in humans. Lawrence is a member of the UNC Lineberger Comprehensive Cancer Center and professor in the College of Arts and Sciences and School of Medicine.
-end-


University of North Carolina at Chapel Hill

Related Red Blood Cells Articles:

Red blood cell donor pregnancy history not tied to mortality after transfusion
A new study has found that the sex or pregnancy history of red blood cell donors does not influence the risk of death among patients who receive their blood.
How sickled red blood cells stick to blood vessels
An MIT study describes how sickled red blood cells get stuck in tiny blood vessels of patients with sickle-cell disease.
Red-blood-cell 'hitchhikers' offer new way to transport drugs to specific targets
A new drug-delivery technology which uses red blood cells to shuttle nano-scale drug carriers, called RBC-hitchhiking, has been found in animal models to dramatically increase the concentration of drugs ferried precisely to selected organs,
Novel gene in red blood cells may help adult newts regenerate limbs
Adult newts can repeatedly regenerate body parts. Researchers from Japan, including the University of Tsukuba, and the University of Daytona, have identified Newtic1, a gene that is expressed in clumps of red blood cells in the circulating blood.
Bristol researchers use gene editing to improve red blood cell transfusion compatibility
Synthetic biologists at the University of Bristol have succeeded in generating laboratory-made red blood cells with rare blood group types that could one day be used to help patients who cannot be matched with donor blood.
More Red Blood Cells News and Red Blood Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...