Nav: Home

More frequent hurricanes not necessarily stronger on Atlantic coast

January 04, 2017

MADISON, Wis. -- Active Atlantic hurricane periods, like the one we are in now, are not necessarily a harbinger of more, rapidly intensifying hurricanes along the U.S. coast, according to new research performed at the University of Wisconsin-Madison.

In fact, the research -- published Wednesday [Jan. 4, 2017] in the journal Nature by James Kossin, a federal atmospheric research scientist based at the UW -- indicates that hurricanes approaching the U.S. are more likely to intensify during less active Atlantic periods. During more active periods, they are more likely to weaken.

The relationship between the number of hurricanes that develop in the Atlantic basin and the number of major hurricanes that make landfall is a weak one, says Kossin, and one that has not yet been well explained. The new study accounts for at least part of that relationship.

Historically, notes Kossin, researchers (including himself) have focused primarily on the tropical Atlantic -- the main hurricane development region --without distinguishing how hurricane-producing conditions may vary outside of it.

They knew a combination of warm ocean temperatures in the tropics and low vertical wind shear (changes in wind speed relative to altitude) results in favorable conditions for hurricane formation, while cooler than average sea surface temperatures work in tandem with higher than average wind shears to produce quieter hurricane seasons.

Scientists also knew that environmental conditions, primarily ocean temperatures and wind shear, determine whether Atlantic hurricanes intensify or weaken as their natural track pushes them northwesterly toward the U.S. coast.

But Kossin, a National Oceanic and Atmospheric Administration National Centers for Environmental Information scientist working out of UW-Madison's NOAA Cooperative Institute, wondered "what other patterns there might be." His study took a step back and looked for related patterns over the entire basin.

Kossin analyzed two datasets gathered over three 23-year periods from 1947 to 2015. The first dataset, from the historical record of hurricane observations maintained by the U.S. National Hurricane Center, supplied observations taken every six hours and included information on location, maximum winds and central pressure.

The second, an environmental data set from the National Centers for Environmental Prediction and the National Center for Atmospheric Research, provided a benchmark for sea surface temperatures and wind shear for the period of interest.

Overall, when the tropics generate many hurricanes -- during periods of low wind shear and high ocean temperatures in the tropical Atlantic -- they also create a situation where those hurricanes lose energy if they approach the coast, as they encounter a harsh environment of higher wind shear and cooler ocean temperatures.

"They have to track through a gauntlet of high shear to reach the coast and many of them stop intensifying," Kossin says. "It is a natural mechanism for killing off hurricanes that threaten the U.S. coast."

What are the implications for U.S. coastal regions? "It is good news," says Kossin. "Greater activity produces more threats, but at the same time, we increase our protective barrier. It's pretty amazing that it happens to work that way."

The data suggest we may be moving into another quieter period in the basin, however, where less activity works hand in hand with lower wind shears along the coast, eradicating the protective barrier. As a result, says Kossin, while there may be fewer hurricanes approaching the coast, those that do may be much stronger, in the range of Category 3 to Category 5.

The threat of rapid strengthening is highly relevant to society, in particular to those who live along densely populated coastlines where the warning times for evacuation may already be short.

"Knowing the relationship between tropical activity and coastal conditions that either protect the coast or make it more vulnerable may help us better prepare for future landfalls," Kossin says.

Like any research study, the results raise more questions. For instance, how might climate change affect this relationship? Other studies, says Kossin, have documented a rise in sea surface temperatures -- a shift attributed to anthropogenic climate change. But the sea surface trend does not seem to be having a large effect on hurricane activity in the coastal region, at least over the past 70 years or so.

Kossin says this could fall under the heading of a "climate surprise" if the environmental conditions responsible for the protective barrier during active periods are compromised by climate change.

"There is no reason to think that this is a stationary mechanism," says Kossin. "It's entirely possible that changes in climate could affect the natural barrier and thus significantly increase coastal hazard and risk."
-end-


University of Wisconsin-Madison

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
Climate taxes on agriculture could lead to more food insecurity than climate change itself
New IIASA-led research has found that a single climate mitigation scheme applied to all sectors, such as a global carbon tax, could have a serious impact on agriculture and result in far more widespread hunger and food insecurity than the direct impacts of climate change.
More Climate Change News and Climate Change Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab