Nav: Home

Scientists develop new antibiotic for gonorrhea

January 04, 2017

Scientists at the University of York have harnessed the therapeutic effects of carbon monoxide-releasing molecules to develop a new antibiotic which could be used to treat the sexually transmitted infection gonorrhoea.

The infection, which is caused by the bacteria Neisseria gonorrhoeae, has developed a highly drug-resistant strain in recent years with new cases reported in the north of England and Japan.

There are concerns that gonorrhoea, which is the second most common sexually transmitted infection in England, is becoming untreatable.

Almost 35,000 cases were reported in England during 2014, with most cases affecting young men and women under the age of 25. The interdisciplinary team, from the University of York's Departments of Biology and Chemistry, targeted the "engine room" of the bacteria using carbon monoxide-releasing molecules (CO-RMs).

CO is produced naturally in the body, but there is increasing evidence that carbon monoxide enhances antibiotic action with huge potential for treating bacterial infections.

The scientists found that Neisseria gonorrhoeae is more sensitive to CO-based toxicity than other model bacterial pathogens, and may serve as a viable candidate for antimicrobial therapy using CO-RMs.

The CO molecule works by binding to the bacteria, preventing them from producing energy.

Scientists believe the breakthrough, published in the journal MedChemComm, could pave the way for new treatments.

Professor Ian Fairlamb, from the University's Department of Chemistry, said: "The carbon monoxide molecule targets the engine room, stopping the bacteria from respiring. Gonorrhoea only has one enzyme that needs inhibiting and then it can't respire oxygen and it dies.

"People will be well aware that CO is a toxic molecule but that is at high concentrations. Here we are using very low concentrations which we know the bacteria are sensitive to.

"We are looking at a molecule that can be released in a safe and controlled way to where it is needed."

The team say the next stage is to develop a drug, either in the form of a pill or cream, so that the fundamental research findings can be translated on to future clinical trials.

Professor Fairlamb added: "We think our study is an important breakthrough. It isn't the final drug yet but it is pretty close to it." "People might perceive gonorrhoea as a trivial bacterial infection, but the disease is becoming more dangerous and resistant to antibiotics."

The team worked with Professor James Moir from the University's Department of Biology. He added: "Antimicrobial resistance is a massive global problem which isn't going away. We need to use many different approaches, and the development of new drugs using bioinorganic chemistry is one crucial way we can tackle this problem, to control important bacterial pathogens before the current therapies stop working."
-end-
The study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

The full research paper can be found here: http://pubs.rsc.org/en/content/articlelanding/2017/md/c6md00603e#!divAbstract

University of York

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".