Study: Sleeping sickness not just a sleeping disorder

January 04, 2018

An international study from the Instituto de Medicina Molecular shows one of Africa's most lethal diseases is actually a circadian rhythm disorder caused by the acceleration of biological clocks controlling a range of vital functions besides sleep.

By understanding which clock genes are affected by the parasitic disease, scientists hope the research will eventually prove useful in developing therapeutic alternatives to the toxic treatments that are occasionally fatal to patients.

"This is not specifically a sleeping disorder (feel free to adjust, delete this quote as desired)," said Dr. Luisa Figueiredo, Group Leader at Instituto de Medicina Molecular.

Sleeping sickness - known as Human African trypanosomiasis - is transmitted through the bite of the tsetse fly and threatens tens of millions of people in sub-Saharan African countries. After entering the body, the parasite causes such symptoms as inverted sleeping cycles, fever, muscle weakness, and itching. It eventually invades the central nervous system and, depending on its type, can kill its host in anywhere from a few months to several years.

The mouse study published in Nature Communications shows sleeping sickness symptoms can occur soon after infection, even before parasites accumulate in large numbers in the brain. Scientists found that the biological clocks in infected mice ran faster after parasites entered the blood stream, resulting in inverted sleeping cycles as well as hormone and body temperature abnormalities similarly seen in patients with sleeping sickness.

However, not all parasitic diseases appear to be circadian rhythm disorders: The biological clocks of mice infected with malaria were unaltered.

"What we still need to find out is exactly what is causing the clocks to change during sleeping sickness. Is it a secretion from the parasite, or a molecule produced by the host in response to the infection? Knowing the source will help us have a better understanding of the disease and potentially block such effects." said Dr. Figueiredo, who was recently awared a grant from the European Research Council.

The study is the second recent collaborative effort between Dr. Figueiredo and Dr. Joseph Takahashi at the UT Southwestern, Dallas, USA. It builds upon research they published last year that showed for the first time that parasites have biological clocks. The study further showed that this circadian cycle renders the sleeping sickness parasite -- known as Trypanosoma brucei - more vulnerable to medications during the afternoon.

Both findings could eventually be beneficial for patients whose bodies can't handle side effects of the arsenic-based treatments used to eradicate the parasite. In addition to knowing which genes to target when developing new therapies, doctors hope the findings will allow them to reduce the duration and dosage of current treatments by knowing the optimal time to administer them.

Meanwhile, control efforts have significantly reduced the number of cases over the last decade. However, an unknown number of people still die annually from sleeping sickness as scientists continue seeking vaccines and alternative treatments.
-end-
The work was supported by HHMI and the Fundação para a Ciência e Tecnologia.

Instituto de Medicina Molecular

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.