Nav: Home

A thermometer for the oceans

January 04, 2018

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of the extra heat is absorbed by the oceans. This means that the average sea temperature can tell us a lot about the state of our climate, both today and in the past. However, it is difficult to determine an accurate average value across all sea depths and regions of the world. The results of previous measurement methods heavily depend on location, season or sea depth, which can lead to distorted results. As part of the WAIS Divide Ice Core Project, an international research team led by Bernhard Bereiter from the Scripps Institution of Oceanography - now working at Empa and the University of Bern - has developed a method of measuring ocean temperatures over the last 24'000 years with high accuracy. These measurements have now been published in Nature. "Our study clearly shows that the basic idea - the connection between the concentration of noble gases in the atmosphere and the average ocean temperature - is correct and that the method works," said Bereiter.

Eternal ice as contemporary witness

The work is based on ice cores from the Antarctic. The layers of eternal ice form an archive of the atmosphere, in which not only dust particles and solids but also air and other gases are trapped. In these bubbles one can determine the concentration of different gases. For once, it is not the usual suspects such as the greenhouse gases methane and carbon dioxide that play a role, but the noble gases krypton, xenon and argon, as Bereiter points out. The principle can be explained as follows: cooling water absorbs noble gases from the atmosphere, while warming water releases noble gases into the atmosphere. The concentration of noble gases in the atmosphere thus allows conclusions to be drawn about the average global temperature of the sea - and not only the warmer ocean surface, but the mean temperature averaged over the entire mass of water to the very bottom of the sea.

A look into the past

The drill cores from the Antarctic ice cover the period of the past 24'000 years. During this time, the transition from the last ice age to the current warm age took place. This is also reflected in the results from drilling cores: the researchers found a significant rise in mean ocean temperatures; overall, the ocean warmed up by 2.6 degrees Celsius over a period of 10'000 years. In the analysis of the data, Bereiter found that the increase in average global sea temperature is strongly correlated to the air temperature in Antarctica, which underscores the influence of the southern hemisphere on the global climate. Up to now, this type of temperature measurement can only be applied to very large changes such as the investigated transition from an ice age to a warm age. In theory, however, the method should also work to monitor current changes. These are (still) relatively small compared to the temperature changes investigated in the current study, which is why much more precise methods than are currently available are urgently needed, according to the Empa researcher.

Box: The WAIS Divide Ice Core Project

Ice cores are our only source of samples from the palaeo-atmosphere and are, therefore, extremely valuable for palaeo-climate research because they capture environmental parameters ranging, on local scales, from individual snowflakes to the entire Earth's atmosphere and, on time scales, from hours to hundreds of thousands of years. They record numerous aspects of the Earth's climate system in a single archive with very high temporal resolution. The aim of the WAIS (West Antarctic Ice Sheet) Divide Ice Core Project is to investigate the climate from the last ice age to the present day with a much greater time resolution and dating accuracy than previously possible. This applies in particular to the analysis of atmospheric gases, water isotopes and chemicals.
-end-


Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Related Ice Age Articles:

Paintings, sunspots and frost fairs: Rethinking the Little Ice Age
The whole concept of the 'Little Ice Age' is 'misleading,' as the changes were small-scale, seasonal and insignificant compared with present-day global warming, a group of solar and climate scientists argue.
Ice age thermostat prevented extreme climate cooling
During the ice ages, an unidentified regulatory mechanism prevented atmospheric CO2 concentrations from falling below a level that could have led to runaway cooling, reports a study conducted by researchers of the ICTA-Universitat Autònoma de Barcelona and published online in Nature Geoscience this week.
Simple rule predicts when an ice age ends
A simple rule can accurately predict when Earth's climate warms out of an ice age, according to new research led by UCL.
How an Ice Age paradox could inform sea level rise predictions
New findings from the University of Michigan explain an Ice Age paradox and add to the mounting evidence that climate change could bring higher seas than most models predict.
Inception of the last ice age
A new model reconstruction shows in exceptional detail the evolution of the Eurasian ice sheet during the last ice age.
Ice age vertebrates had mixed responses to climate change
New research examines how vertebrate species in the eastern United States ranging from snakes to mammals to birds responded to climate change over the last 500,000 years.
Why does our planet experience an ice age every 100,000 years?
Experts from Cardiff University have offered up an explanation as to why our planet began to move in and out of ice ages every 100,000 years.
Siberian larch forests are still linked to the ice age
The Siberian permafrost regions include those areas of the Earth, which heat up very quickly in the course of climate change.
Mars is emerging from an ice age
Radar measurements of Mars' polar ice caps reveal that the mostly dry, dusty planet is emerging from an ice age, following multiple rounds of climate change.
New ice age knowledge
An international team of researchers headed by scientists from the Alfred Wegener Institute has gained new insights into the carbon dioxide exchange between ocean and atmosphere, thus making a significant contribution to solving one of the great scientific mysteries of the ice ages.

Related Ice Age Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...