Dirt-dwelling microbe produces potential anti-melanoma weapon

January 04, 2018

CORVALLIS, Ore. - A type of soil-dwelling bacterium produces molecules that induce death in melanoma cells, research at Oregon State University shows.

The molecule is a secondary metabolite, also known as a natural product, of Streptomyces bottropensis, and its properties are important because there are not many therapies that effectively manage melanoma, the most dangerous form of skin cancer.

In the U.S. alone, more than 80,000 new melanoma cases are diagnosed each year and about 9,000 melanoma patients die. Men are more likely than women to develop melanoma; the death rate varies by race and ethnicity and is highest among white people.

Sandra Loesgen, assistant professor of chemistry and Terence Bradshaw, a scholar in OSU's College of Science, postdoctoral scholar Birte Plitzko and graduate student Elizabeth Kaweesa found that the natural product, mensacarcin, goes after melanoma cells' mitochondria - the part of a cell that creates most of the energy needed for life.

Mitochondria are also important in cell death signaling, and they have emerged as a potential target for therapy because cancer cell mitochondria are structurally and functionally different from mitochondria of non-cancerous cells.

"Mensacarcin has potent anticancer activity, with selectivity against melanoma cells," Loesgen said. "It shows powerful anti-proliferative effects in all tested cancer cell lines in the U.S. Cancer Institute's cell line panel, but inhibition of cell growth is accompanied by fast progression into cell death in only a small number of cell lines, such as melanoma cells."

To see what mensacarcin was doing to melanoma on a subcellular level, Loesgen and her team synthesized a fluorescent mensacarcin probe.

"The probe was localized to mitochondria within 20 minutes of treatment," she said. "The localization together with mensacarcin's unusual metabolic effects in melanoma cells provide evidence that mensacarcin targets mitochondria."

Live-cell bioenergetic flux analysis showed mensacarcin disturbed energy production and mitochondrial function rapidly.

"Its unique mode of action suggests it may be a useful probe for examining energy metabolism," she added. "Subsequent experiments revealed that mensacarcin rapidly alters mitochondrial pathways, resulting in mitochondrial dysfunction."

The dysfunction activates pathways to apoptosis - programmed cell death.

"Flow cytometry identified a large population of apoptotic melanoma cells, and single-cell electrophoresis indicated that mensacarcin causes genetic instability, a hallmark of early apoptosis," Loesgen said. "Mensacarcin's unique mode of action indicates it might represent a promising lead for the development of new anticancer drugs."

Findings were published recently in the Journal of Biological Chemistry.

Mensacarcin is a highly oxidized and stereogenic complex molecule that can be obtained in large amounts from its producing organism.

Natural product discoveries have contributed to many new drug leads. Loesgen points to a recent analysis of new medicines approved by the United States Food and Drug Administration between 1981 and 2014 that showed about half of all small-molecule pharmaceuticals were based on natural products or their derivatives.
-end-


Oregon State University

Related Melanoma Articles from Brightsurf:

Boosting treatments for metastatic melanoma
University of Cincinnati clinician-scientist Soma Sengupta, MD, PhD, says that new findings from her and Daniel Pomeranz Krummel's, PhD, team might have identified a treatment-boosting drug to enhance effectiveness of therapies for metastatic cancer and make them less toxic, giving patients a fighting chance at survival and improved quality of life.

A promising new tool in the fight against melanoma
An Edith Cowan University (ECU) study has revealed that a key blood marker of cancer could be used to select the most effective treatment for melanoma.

New targets for melanoma treatment
A collaborative study led by Monash University's Biomedicine Discovery Institute and the Olivia Newton-John Cancer Research Institute (ONJCRI) has uncovered new markers (HLA-associated peptides) that are uniquely present on melanoma tumours and could pave the way for therapeutic vaccines to be developed in the fight against melanoma.

Innovative smartphone-camera adaptation images melanoma and non-melanoma
An article published in the Journal of Biomedical Optics (JBO), ''Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring,'' shows that standard smartphone technology can be adapted to image skin lesions, providing a low-cost, accessible medical diagnostic tool for skin cancer.

Antihistamines may help patients with malignant melanoma
Can a very common allergy medicine improve survival among patients suffering from the serious skin cancer, malignant melanoma?

Blood test for deadly eye melanoma
A simple blood test could soon become the latest monitoring tool for the early detection of melanoma in the eye.

Analysis of melanoma in US by age groups
This study used registry data to determine annual rates of melanoma in pediatric, adolescent, young adult and adult age groups, and the findings suggest an apparent decrease among adolescent and young adults between 2006 and 2015 but increases in older adults.

Vitamin D dials down the aggression in melanoma cells
Vitamin D influences the behaviour of melanoma cells in the lab by making them less aggressive, Cancer Research UK scientists have found.

B cells linked to immunotherapy for melanoma
Immunotherapy uses our body's own immune system to fight cancer.

Five things to know about melanoma
'Five things to know about ... melanoma' in CMAJ (Canadian Medical Association Journal) provides a brief overview of this malignant skin cancer for physicians and patients.

Read More: Melanoma News and Melanoma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.