Where will the world's next Zika, West Nile or Dengue virus come from?

January 04, 2019

After collecting data and comparing it with every known mammal and bird species on Earth, scientists from the University of California, Davis, have identified wildlife species that are the most likely to host flaviviruses such as Zika, West Nile, dengue and yellow fever. Flaviviruses are known to cause major epidemics and widespread illness and death throughout the world.

The resulting "hot spot" maps show regions of the world with high diversity of potential wildlife hosts of flaviviruses -- viruses mostly spread by mosquitoes and ticks. These include regions where flaviviruses have not been detected but that have wildlife species with the potential to harbor them.

The information provides scientists and health authorities with a road map for disease detection and surveillance efforts.

"Tomorrow, if there's an outbreak anywhere in the world, we now know which wildlife species are most likely to be infected in addition to humans," said lead author Pranav Pandit, a postdoctoral scholar with the UC Davis One Health Institute's EpiCenter for Disease Dynamics in the School of Veterinary Medicine.

PREDICTING POTENTIAL HOSTS

The findings are reported in a recent study published in the journal Nature Communications.

Recently Zika virus emerged and continues to circulate in South America and Southeast Asia. The study predicts potential wildlife hosts in these regions with the ability to maintain Zika virus transmission in nature.

There is also rising concern that Japanese encephalitis virus will emerge and establish in Europe. The study identifies Europe as one of the regions with a high richness of potential Japanese encephalitis hosts, including many common bird species.

For the study, researchers collected all the published data on wildlife species that have tested positive for flaviviruses. They identified important host traits, such as environmental and physiological features. Then they used a machine-learning model that considered the roughly 10,400 avian and 5,400 mammal species in order to identify the most likely species to host viruses.

The model predicted hundreds of previously unobserved host species. For example, it predicted 173 host species for dengue virus, of which 139 have not been previously recognized.

HELPING HUMANS AND OTHER PRIMATES

Co-leading author and UC Davis professor Christine Kreuder Johnson said the modeling work can help researchers identify which primate species could be potential virus hosts. For example, the model indicated that primates are the main hosts of Zika and yellow fever, but only nine of the 21 primate species predicted to be hosts have been detected with either of those viruses due to limited surveillance activities among these species to date.

UC Davis One Health Institute scientists have established noninvasive sampling techniques for primates, such as collecting saliva from sticks and plants chewed by primates or from ropes coated with strawberry jam. But flaviviruses can be difficult to detect, especially in wildlife.

"We needed this modeling technique to help us understand the most likely hosts for these viruses in their natural habitat," said Johnson, director of the EpiCenter for Disease Dynamics. "That's important for both global health and wildlife conservation. Many of these primates are already endangered, and these diseases burden an already strained population."
-end-
Co-authors include Megan Doyle and Cristin Young from the One Health Institute's EpiCenter for Disease Dynamics in the UC Davis School of Veterinary Medicine, and Katrina Smart and Gaylen Drape from ENSCO Inc.

The research received funding from the U.S. Department of Defense's Defense Threat Reduction Agency.

University of California - Davis

Related Dengue Virus Articles from Brightsurf:

Researchers develop virus live stream to study virus infection
Researchers from the Hubrecht Institute and Utrecht University developed an advanced technique that makes it possible to monitor a virus infection live.

Is the COVID-19 pandemic affecting dengue virus case numbers?
The ongoing COVID-19 pandemic has resulted in dramatic changes to human mobility, which has the potential to change the transmission dynamics of other infectious diseases.

Prior Zika virus infection increases risk of severe dengue disease
A new study led by researchers at the University of California, Berkeley, finds that people who have antibodies to the mosquito-borne Zika virus are more vulnerable to developing dengue disease.

Lab-made virus mimics COVID-19 virus
Researchers at Washington University School of Medicine in St. Louis have created a virus in the lab that infects cells and interacts with antibodies just like the COVID-19 virus, but lacks the ability to cause severe disease.

Current serotype of dengue virus in Singapore disguises itself to evade vaccines and therapeutics
Singapore saw 1,158 dengue cases in the week ending 13 June 2020, the highest number of weekly dengue cases ever recorded since 2014*.

Understanding the initial immune response after dengue virus infection
This study sheds new light on the body's initial response to dengue virus infection, describing the molecular diversity and specificity of the antibody response.

Mosquitoes engineered to repel dengue virus
An international team of scientists has synthetically engineered mosquitoes that halt the transmission of the dengue virus.

Engineered mosquitoes cannot be infected with or transmit any dengue virus
Genetically engineered mosquitoes are resistant to multiple types of dengue virus (DENV), according to a study published Jan.

Structurally designed DNA star creates ultra-sensitive test for dengue virus
By folding snippets of DNA into the shape of a five-pointed star using structural DNA nanotechnology, researchers have created a trap that captures Dengue virus as it floats in the bloodstream.

Trials promise good news for countries with dengue and Zika virus
Scientists from the University of Melbourne and Glasgow and the Institute for Medical Research in Malaysia have found an effective and environmentally sustainable way to block the transmission of mosquito-borne dengue virus, in trials carried out in Malaysia.

Read More: Dengue Virus News and Dengue Virus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.