Novel film that that evaporates sweat six times faster and holds 15 times more moisture

January 04, 2021

A team of researchers from the National University of Singapore (NUS) has created a novel film that is very effective in evaporating sweat from our skin to keep us cool and comfortable when we exercise, and the moisture harvested from human sweat can be used to power wearable electronic devices such as watches, fitness trackers, and more.

Sweating is a natural process for our body to reduce thermal stress. "Sweat is mostly composed of water. When water is evaporated from the skin surface, it lowers the skin temperature and we feel cooler. In our new invention, we created a novel film that is extremely effective in evaporating sweat from our skin and then absorbing the moisture from sweat. We also take this one step further - by converting the moisture from sweat into energy that could be used to power small wearable devices," explained research team leader Assistant Professor Tan Swee Ching, who is from the NUS Department of Material Science and Engineering.

The main components of the novel thin film are two hygroscopic chemicals - cobalt chloride and ethanolamine. Besides being extremely moisture-absorbent, this film can rapidly release water when exposed to sunlight, and it can be 'regenerated' and reused for more than 100 times.

To make full use of the absorbed sweat, the NUS team has also designed a wearable energy harvesting device comprising eight electrochemical cells (ECs), using the novel film as the electrolyte. Each EC can generate about 0.57 volts of electricity upon absorbing moisture. The overall energy harvested by the device is sufficient to power a light-emitting diode. This proof-of-concept demonstration illustrates the potential of battery-less wearables powered using human sweat.

This technological breakthrough was reported in the September print issue of the scientific journal Nano Energy.

Absorbing moisture for personal comfort

Conventional hygroscopic materials such as zeolites and silica gels have low water uptake and bulk solid structures, making them unsuitable for absorbing moisture from sweat evaporation. In comparison, the new moisture-absorbing film developed by NUS researchers takes in 15 times more moisture and do this 6 times faster than conventional materials.

In addition, this innovative film shows a colour change upon absorbing moisture, from blue to purple, and finally pink. This feature can be used an indicator of the degree of moisture absorption.

The NUS team packaged the film into breathable and waterproof polytetrafluoroethylene (PTFE) membranes, which are flexible and commonly used in clothing, and successfully demonstrated the application of the moisture-absorption film for underarm pad, shoe lining and shoe insole.

Asst Prof Tan said, "Underarm sweating is embarrassing and frustrating, and this condition contributes to the growth of bacteria and leads to unpleasant body odour. Accumulation of perspiration in the shoes could give rise to health problems such as blisters, calluses, and fungal infections. Using the underarm pad, shoe lining and shoe insole embedded with the moisture-absorbing film, the moisture from sweat evaporation is rapidly taken in, preventing an accumulation of sweat and provides a dry and cool microclimate for personal comfort."

"The prototype for the shoe insole was created using 3D printing. The material used is a mixture of soft polymer and hard polymer, thus providing sufficient support and shock absorption," explained research team co-leader Professor Ding Jun, who is also from the NUS Department of Material Science and Engineering.

The NUS team now hopes to work with companies to incorporate the novel moisture-absorption film into consumer products.
-end-


National University of Singapore

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.