Supercapacitors challenge batteries

January 04, 2021

A team working with Roland Fischer, Professor of Inorganic and Metal-Organic Chemistry at the Technical University Munich (TUM) has developed a highly efficient supercapacitor. The basis of the energy storage device is a novel, powerful and also sustainable graphene hybrid material that has comparable performance data to currently utilized batteries.

Usually, energy storage is associated with batteries and accumulators that provide energy for electronic devices. However, in laptops, cameras, cellphones or vehicles, so-called supercapacitors are increasingly installed these days.

Unlike batteries they can quickly store large amounts of energy and put it out just as fast. If, for instance, a train brakes when entering the station, supercapacitors are storing the energy and provide it again when the train needs a lot of energy very quickly while starting up.

However, one problem with supercapacitors to date was their lack of energy density. While lithium accumulators reach an energy density of up to 265 Kilowatt hours (KW/h), supercapacitors thus far have only been delivering a tenth thereof.

Sustainable material provides high performance

The team working with TUM chemist Roland Fischer has now developed a novel, powerful as well as sustainable graphene hybrid material for supercapacitors. It serves as the positive electrode in the energy storage device. The researchers are combining it with a proven negative electrode based on titan and carbon.

The new energy storage device does not only attain an energy density of up to 73 Wh/kg, which is roughly equivalent to the energy density of an nickel metal hydride battery, but also performs much better than most other supercapacitors at a power density of 16 kW/kg. The secret of the new supercapacitor is the combination of different materials - hence, chemists refer to the supercapacitor as "asymmetrical."

Hybrid materials: Nature is the role model

The researchers are betting on a new strategy to overcome the performance limits of standard materials - they utilize hybrid materials. "Nature is full of highly complex, evolutionarily optimized hybrid materials - bones and teeth are examples. Their mechanical properties, such as hardness and elasticity were optimized through the combination of various materials by nature," says Roland Fischer.

The abstract idea of combining basic materials was transferred to supercapacitors by the research team. As a basis, they used the novel positive electrode of the storage unit with chemically modified graphene and combined it with a nano-structured metal organic framework, a so-called MOF.

Powerful and stable

Decisive for the performance of graphene hybrids are on the one hand a large specific surface and controllable pore sizes and on the other hand a high electrical conductivity. "The high performance capabilities of the material is based on the combination of the microporous MOFs with the conductive graphene acid," explains first author Jayaramulu Kolleboyina, a former guest scientist working with Roland Fischer.

A large surface is important for good supercapacitors. It allows for the collection of a respectively large number of charge carriers within the material - this is the basic principle for the storage of electrical energy.

Through skillful material design, the researchers achieved the feat of linking the graphene acid with the MOFs. The resulting hybrid MOFs have a very large inner surface of up to 900 square meters per gram and are highly performant as positive electrodes in a supercapacitor.

Long stability

However, that is not the only advantage of the new material. To achieve a chemically stable hybrid, one needs strong chemical bonds between the components. The bonds are apparently the same as those between amino acids in proteins, according to Fischer: "In fact, we have connected the graphene acid with a MOF-amino acid, which creates a type of peptide bond."

The stable connection between the nano-structured components has huge advantages in terms of long term stability: The more stable the bonds, the more charging and discharging cycles are possible without significant performance impairment.

For comparison: A classic lithium accumulator has a useful life of around 5,000 cycles. The new cell developed by the TUM researchers retains close to 90 percent capacity even after 10,000 cycles.

International network of experts

Fischer emphasizes how important the unfettered international cooperation the researchers controlled themselves was when it came to the development of the new supercapacitor. Accordingly, Jayaramulu Kolleboyina built the team. He was a guest scientist from India invited by the Alexander von Humboldt Foundation and who by now is the head of the chemistry department at the newly established Indian Institute of Technology in Jammu.

"Our team also networked with electro-chemistry and battery research experts in Barcelona as well as graphene derivate experts from the Czech Republic," reports Fischer. "Furthermore, we have integrated partners from the USA and Australia. This wonderful, international co-operation promises much for the future."
-end-
The research was supported by the Deutsche Forschungsgemeinschaft (DFG) within the cluster of excellence e-conversion, the Alexander von Humboldt Foundation, the Indian Institute of Technology Jammu, the Queensland University of Technology and the Australian Research Council (ARC). Further funding came from the European Regional Development Fund provided by the Ministry of Education, Youth and Sports of the Czech Republic.

Publication:

Jayaramulu Kolleboyina, Michael Horn, Andreas Schneemann, Aristides Bakandritsos, Vaclav Ranc, Martin Petr, Vitalie Stavila, Chandrabhas Narayana, B?a?ej Scheibe, Št?pán Kment, Michal Otyepka, Nunzio Motta, Deepak Dubal, Radek Zboril und Roland A. Fischer Covalent Graphene-MOF Hybrids for High Performance Asymmetric Supercapacitors Advanced Materials, 4.12.2020 - DOI: 10.1002/adma.202004560

Technical University of Munich (TUM)

Related Energy Storage Articles from Brightsurf:

Reviewing multiferroics for future, low-energy data storage
Big data and exponential demands for computations are driving an unsustainable rise in global ICT energy use.

The perfect angle for e-skin energy storage
Researchers at DGIST have found an inexpensive way to fabricate tiny energy storage devices that can effectively power flexible and wearable skin sensors along with other electronic devices, paving the way towards remote medical monitoring & diagnoses and wearable devices.

Upcycling plastic waste toward sustainable energy storage
UC Riverside engineering professors Mihri and Cengiz Ozkan and their students have been working for years on creating improved energy storage materials from sustainable sources, such as glass bottles, beach sand, Silly Putty, and portabella mushrooms.

Chemists advance solar energy storage aimed at global challenges
Multi-university effort develops solar energy storage to enable decentralized electrification systems in remote areas.

Energy-saving servers: Data storage 2.0
A research team of Mainz University has developed a technique that will potentially halve the energy required to write data to servers and make it easier to construct complex server architectures.

Energy storage using oxygen to boost battery performance
Researchers have presented a novel electrode material for advanced energy storage device that is directly charged with oxygen from the air.

New material, modeling methods promise advances in energy storage
The explosion of mobile electronic devices, electric vehicles, drones and other technologies have driven demand for new lightweight materials that can provide the power to operate them.

Finding balance between green energy storage, harvesting
Generating power through wind or solar energy is dependent on the abundance of the right weather conditions, making finding the optimal strategy for storage crucial to the future of sustainable energy usage.

Diamonds shine in energy storage solution
QUT researchers have proposed the design of a new carbon nanostructure made from diamond nanothreads that could one day be used for mechanical energy storage, wearable technologies, and biomedical applications.

Gas storage method could help next-generation clean energy vehicles
A Northwestern University research team has designed and synthesized new materials with ultrahigh porosity and surface area for the storage of hydrogen and methane for fuel cell-powered vehicles.

Read More: Energy Storage News and Energy Storage Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.