Pioneering Research Could Lead To Treatment

January 04, 1999

HOUGHTON, MI -- Two Michigan Tech researchers have found a way to move some of Nature's most delicate objects with the precision of pieces on a chess board. With their new technique, they hope to lay the foundation for constructing custom-made, living tissues, possibly even creating bridges of nerves to repair spinal cord injuries.

Assistant professors David Odde (chemical engineering) and Michael Renn (physics) use lasers to push nerve cells taken from embryonic chicks into position on a glass chip. Then the embryonic cells can be teased with a glass needle to send out connections to other nerve cells, forming a disciplined network of living tissue.

"You can potentially set up mimics of neural architectures in the body, reproducing tissues on the chip," Odde said.

"It's a non-contact method. We push the cells with a laser," Renn said, adding, "Who'd have thought that they wouldn't just heat up and die?"

You can't push just anything around with a laser. It has to be smaller than 10 microns across, or about one-tenth the width of a human hair. Renn has been experimenting in the field for several years, using a laser to guide atoms along a hollow optical fiber and then planting them on a substrate. The researchers began their collaboration when Odde heard of Renn's work and thought it might have applications in biomedical engineering.

Renn explains. "In a spinal cord injury, scar tissue blocks the nerve impulses coming from the brain," he said. "Maybe this technique could be used to build a bridge of nerve cells that could be placed over the injured area." The tissue could also be used to better understand and perhaps develop cures for neurological disorders.

And, while they haven't tried this technique, known as direct-write lithography, on other cells, they envision much broader applications. "Suppose we could deliver new cells to a damaged region, say the liver," Odde said. "Could we make some tissue equivalent that would support liver function?"

"And we can manipulate almost any kind of material, so you could mix electronic as well as biological materials on one chip," Renn said. He hopes to commercialize direct-write lithography to make circuits on an unlimited variety of substrates. Though the technique is not as fast as the photolithography now used to make computer chips, it can function on a much smaller scale, with "wires" only 20 nanometers in diameter--one-five-hundredth the width of a single neuron.

"When people ask us "What's next?" I don't know what to say," Odde said. "The possibilities are enormous. We can put an arbitrary pattern of arbitrary particles on an arbitrary surface--When I think about it, I get really excited."
-end-


Michigan Technological University

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.