Graphene's piezoelectric promise

January 05, 2012

Graphene, the ultra-durable carbon material that holds promise for a range of applications, has yet another trick up its single-atom-thick sleeve. Engineers at the University of Houston have used quantum mechanical calculations to show that, merely by creating holes of a certain configuration in a sheet of graphene, they can coax graphene into behaving like a piezoelectric material. Piezoelectric substances generate electricity in response to physical pressure, and vice versa, and scientists can use these materials for applications such as energy harvesting and artificial muscles, as well as to make precise sensors. Graphene itself is not naturally piezoelectric. But the Houston engineers reasoned that if they took either a semiconducting or insulator form of graphene, punched triangle-shaped holes into it, and applied a uniform pressure to the material, they could make that material act as though it were piezoelectric.

The team's calculations showed that triangular holes did indeed result in piezoelectric behavior, while circular holes - as they predicted - did not. They also found that graphene's pseudo-piezoelectricity was almost as strong as that of well-known piezoelectric substances such as quartz. The authors suggest that triangular pores could be created in real graphene using electron-beam radiation in a lab, which means these calculations can be tested using existing methods. "Nature has dealt humankind ... a very limited choice of effective electromechanical materials" that exhibit piezoelectricity, write the authors in their paper, accepted to the AIP's Applied Physics Letters. Adding graphene to the list "could potentially open new avenues" of use, both for graphene and for applications that rely on piezoelectricity.
-end-
Article: "Coaxing graphene to be piezoelectric" is accepted for publication in Applied Physics Letters.

Authors: Swapnil Chandratre (1) and Pradeep Sharma (1, 2).

(1) Department of Mechanical Engineering, University of Houston, Texas (2) Department of Physics, University of Houston, Texas

American Institute of Physics

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.