Nav: Home

Traveling salesman uncorks synthetic biology bottleneck

January 05, 2016

Researchers have created a computer program that will open a challenging field in synthetic biology to the entire world.

In the past decade, billions of dollars have been spent on technology that can quickly and inexpensively read and write DNA to synthesize and manipulate polypeptides and proteins.

That technology, however, stumbles when it encounters a repetitive genetic recipe. This includes many natural and synthetic materials used for a range of applications from biological adhesives to synthetic silk. Like someone struggling with an "impossible" jigsaw puzzle, synthesizers have trouble determining which genetic piece goes where when many of the building blocks look the same.

Scientists from Duke University have removed this hurdle by developing a freely available computer program based on the "traveling salesman" mathematics problem. Synthetic biologists can now find the least-repetitive genetic code to build the molecule they want to study. The researchers say their program will allow those with limited resources or expertise to easily explore synthetic biomaterials that were once available to only a small fraction of the field.

The results appear in Nature Materials, January 4, 2016.

"Synthesizing and working with highly repetitive polypeptides is a very challenging and tedious process, which has long been a barrier to entering the field," said Ashutosh Chilkoti, the Theo Pilkington Professor of Biomedical Engineering and chair of the biomedical engineering department at Duke. "But with the help of our new tool, what used to take researchers months of work can now be ordered online by anyone for about $100 and the genes received in a few weeks, making repetitive polypeptides much easier to study."

Every protein and polypeptide is based on the sequencing of two or more amino acids. The genetic recipe for an individual amino acid -- called a codon -- is three letters of DNA long. But nature has 61 codons that produce 20 amino acids, meaning there are multiple codons that yield a given amino acid.

Because synthetic biologists can get the same amino acid from multiple codons, they can avoid troublesome DNA repeats by swapping in different codons that achieve the same effect. The challenge is finding the least repetitive genetic code that still makes the desired polypeptide or protein.

"I always thought there was a potential solution, that there must be a way of mathematically figuring it out," said Chilkoti. "I had offered this problem to graduate students before, but nobody wanted to tackle it because it requires a particular combination of high-level math, computer science and molecular biology. But Nicholas Tang was the right guy."

After studying the problem in detail, Nicholas Tang, a doctoral candidate in Chilkoti's laboratory, discovered that the solution is a version of the "traveling salesman" mathematics problem. The classic question is, given a map with a set of cities to visit, what is the shortest route possible that hits every city exactly once before returning to the original city?

After writing the algorithm, Tang put it to the test. He created a laundry list of 19 popular repetitive polypeptides that are currently being studied in laboratories around the world. After passing the codes through the program, he sent them for synthesis by commercial biotechnology outfits -- a task that would be impossible for any one of the original codes.

Without the help of commercial technology, researchers spend months building the DNA that cells use to produce the proteins being studied. It's a tedious, repetitive task -- not the most attractive prospect to a young graduate student. But if the new program worked, the process could be reduced to a few weeks of waiting for machines to deliver the goods instead.

When Tang received his DNA, they each were introduced into living cells to produce the desired polypeptide as hoped.

"He made 19 different polymers from the field in one shot," said Chilkoti. "What probably took tens of researchers years to create, he was able to reproduce in a single paper in a matter of weeks."

Chilkoti and Tang are now working to make the new computer program available online for anybody to use through a simple web form, opening a new area of synthetic biology for all to explore.

"This advance really democratizes the field of synthetic biology and levels the playing field," said Tang. "Before, you had to have a lot of expertise and patience to work with repetitive sequences, but now anyone can just order them online. We think this could really break open the bottleneck that has held the field back and hopefully recruit more people into the field."
-end-
This work was supported by the National Institutes of Health (GM061232) and the National Science Foundation through the Research Triangle Materials Research Science and Engineering Center (NSF DMR-11-21107).

"Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins." Nicholas C. Tang and Ashutosh Chilkoti. Nature Materials, December, 2015. DOI: 10.1038/NMAT4521

Duke University

Related Dna Articles:

A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
New DNA synthesis technique promises rapid, high-fidelity DNA printing
Today, DNA is synthesized as an organic chemist would, using toxic chemicals and error-prone steps that limit accuracy and thus length to about 200 base pairs.
The changing shape of DNA
The shape of DNA can be changed with a range of triggers including copper and oxygen - according to new research from the University of East Anglia.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.