Nav: Home

Genetic changes in birds could throw light on human mitochondrial diseases

January 05, 2016

Deakin University and UNSW Australia researchers have made a rare observation of rapid evolution in action in the wild, documenting the spread of a newly arisen genetic mutation in invasive starlings, which could shed light on mitochondrial disease in humans.

The scientists found West Australian starlings carrying a particular mutation in their mitochondria, the energy powerhouses of cells, almost tripled their population within five years, suggesting the mutation was beneficial to the birds on the invasion front.

The first author of the study published in today's edition of Molecular Biology and Evolution, Deakin University scientist Dr Lee Rollins, said the research was an important step forward in understanding how populations respond to a changing environment.

"Our findings also have important implications for mitochondrial diseases in humans, because this research significantly advances our understanding of how mitochondrial DNA mutations affect individuals and populations, and provides a potential mechanism to explain how different genetic variants may affect health," Dr Rollins said.

Dr Rollins, from Deakin's Centre for Integrative Ecology, within the School of Life and Environmental Sciences, said mitochondria were essential for sustaining life and had their own set of genes, usually only inherited from the mother.

"Sometimes mutations occur and an individual person or animal can end up having two different versions of mitochondrial genes within each cell," Dr Rollins said.

"This is surprisingly common and is associated with many inherited diseases in humans. But we know very little about how different mitochondrial genetic variants compete within individuals."

The research team, co-led by Dr Rollins and Professor Bill Sherwin of UNSW, in collaboration with the Department of Agriculture and Food in Western Australia, studied the DNA of 279 starlings near Munglinup in the south east of Western Australia and identified birds with a novel mitochondrial genome sequence (Haplotype H).

This genetic variant is not present in starlings living elsewhere in the country, so is likely to have arisen in this particular population at the invasion front.

Professor Sherwin, of the UNSW School of Biological, Earth and Environmental Sciences, said the advantageous mutation then spread rapidly through the population, with the proportion of birds carrying Haplotype H increasing from 17 per cent to 47 per cent during the five years of the study.

"We also showed haplotype H was associated with a reduction in the number of copies of the mitochondrial DNA in cells, which might indicate that mitochondria in those cells are more efficient," Professor Sherwin said.

"Biological phenomena are often like the Emperor's new clothes: everybody knows they should be there, but no-one can see them. We have found evidence of a seldom seen, but often discussed phenomenon, providing the first demonstration of rapid evolutionary selection on the mitochondrial genome within individuals in the wild, as a result of an invasive species moving into new territory."

Starlings are considered one of the world's worst invasive alien species, and have been likened to "cane toads with wings" in Australia.

They pose a serious threat to agriculture and the environment and the West Australian government has attempted to eradicate starlings for decades.

"Invasive species usually find themselves in environments where they face novel challenges, and new mutations can help solve these new problems. Our study is one of the first to track this rapid change at a molecular level," Professor Sherwin said.

The team's previous genetic work on the starlings helped inform management strategies in WA, by revealing the state's invasion population did not interbreed much with the three other main populations of starlings in the rest of Australia, indicating that localised control in WA could be effective.
-end-


University of New South Wales

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.