Nav: Home

Polyurethane phase morphology induces endothelial cell organization

January 05, 2016

A group of researchers from the Biomaterials and Regenerative Therapeutics Laboratory in the Department of Biomedical Engineering at University at Buffalo has shown that nanostructured phases of segmental polyurethanes can guide endothelial cells into networks which are critical for initiating vascular structures in regenerative tissue engineering applications. This study has provided an interesting avenue to guide cells with the nanoscale domains of synthetic matrix which has not been perceived as a matrix cue for endothelial cell organization.

Cell-material interactions play a key role in regulating cellular function and organization during tissue regeneration and therefore controlling these interactions on synthetic matrices are crucial for successful tissue engineering. Particularly, endothelial cells require synchronized cell-matrix and cell-cell interactions to organize into networks for capillary tube formation. In contrast to current approaches either utilizes nano and microscale topographies or immobilized cell adhesive ligand to control cellular organization, this study has shown that material induced solid state phase morphology of matrix can provide cues to endothelial cells to form networks, even without any biological stimuli.

The main concept herein describes the significance of segmental polyurethanes which forms nanostructured domains as phases owing to the inter- and intra-segmental interactions and these domains can guide the cells into networks. Using L-tyrosine based biodegradable and biocompatible polyurethanes, researchers have shown that polyurethane matrices display different phase morphologies depending on the segmental composition. The main concept was to utilize these nanodomains of polyurethane as matrix guided signal because natural extracellular matrix also exhibits self-assembled domains. When endothelial cells were cultured on 2-D polyurethane matrices, the cells organized into interconnected networks on polyurethane matrices which displayed well defined segregated phases in nanoscale dimensions. In comparison, cells on phase-mixed polyurethanes were not able to form organized structures. Endothelial cells can sense the nanoscale features of polyurethane matrix and the nanostructured phases provided contact-mediated adhesive guidance to the cells to form interconnected structures.

This concept is significant because material driven phases provided signals for endothelial organization in absence of biological matrix or growth factors and it demonstrates the role of nanophase morphology as a critical regulator for cellular organization.

The future goal is to further characterize the phase morphology with defined nanostructures through modulating polyurethane structure and composition, establishing relationships between varying phase morphology and endothelial cell response, and investigating these responses in 3D scaffolds. Application of this material driven phase engineering presents an exciting new direction for development of tissue engineered synthetic matrices where cellular responses can be tuned with precise spatial and temporal control.

Corresponding author for this study in TECHNOLOGY is Professor Debanjan Sarkar, Ph.D., debanjan@buffalo.edu.
-end-


World Scientific

Related Endothelial Cells Articles:

First-of-its-kind study in endothelial stem cells finds exposure to flavored e-cigarette liquids, e-cigarette use exacerbates cell dysfunction
There has been a rapid rise in e-cigarette use, but its health effects have not been well-studied and their effect on vascular health remains unknown.
Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.
Transplanted bone marrow endothelial progenitor cells delay ALS disease progression
Transplanting human bone marrow-derived endothelial progenitor cells into mice mimicking symptoms of amyotrophic lateral sclerosis (ALS) helped more motor neurons survive and slowed disease progression by repairing damage to the blood-spinal cord barrier, University of South Florida researchers report.
Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
More Endothelial Cells News and Endothelial Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...