Ocean acidification means major changes for California mussels, FSU researcher says

January 05, 2018

TALLAHASSEE, Fla. -- Accelerating ocean acidification could be transforming the fundamental structure of California mussel shells, according to a new report from a Florida State University-led team of scientists.

For thousands of years, California mussel shells have shared a relatively uniform mineralogical makeup -- long, cylindrical calcite crystals ordered in neat vertical rows with crisp, geometric regularity. But in a study published this week in the journal Global Change Biology, researchers suggest that escalating rates of ocean acidification are shaking up that shell mineralogy on its most basic structural levels.

"What we've seen in more recent shells is that the crystals are small and disoriented," said Assistant Professor of Biological Science Sophie McCoy, who led the study. "These are significant changes in how these animals produce their shells that can be tied to a shifting ocean chemistry."

To document these changes, the research team studied an archival record of natural California mussel specimens collected from Tatoosh Island off the northwestern tip of Washington. Modern mussel shells were compared to shells from the 1970s as well as shells provided by the local Makah Cultural and Research Center dating back thousands of years.

Researchers found that while shell mineralogy had remained consistent for centuries, shell specimens collected within the past 15 years had experienced dramatic structural changes.

"When the mussels are ready to build their shells, they first lay down an amorphous soup of calcium carbonate, which they later order and organize," McCoy said. "More recent shells have just started heaping that calcium carbonate soup where it needs to go and then leaving it there disordered."

The team also found that recent shells exhibited elevated levels of magnesium -- a sign that the process of shell formation has been disrupted.

Typically, healthy shells are composed primarily of calcium carbonate, and any magnesium incorporated in a shell is a product of trace amounts of ambient magnesium present in the environment.

"When more magnesium is found in the skeleton, it signals that the organism has less control over what it's making," McCoy said.

Increased skeletal magnesium also causes changes in the strength of important magnesium-oxygen bonds. The robustness of these bonds is an instructive proxy for the level of organization in a shell.

"When there's not a clear geometric pattern in the skeleton, the bond strengths become more variable, and that's what we're seeing in modern shells," McCoy said. "They're not being organized."

This trend toward disorganized, variable shell structures over the past decade corresponds with the rapidly increasing rate of climate change-related ocean acidification. But while these environmental stressors have rendered the California mussel particularly vulnerable, McCoy said that the same variation that stems from disordered skeletons could also offer the species a glimmer of hope.

"An important theme of climate change science is that increased variability might be the new rule," she said. "We know that climate change right now is happening faster than what the Earth has experienced before, but we also see that over these long timescales, things tend to plateau and stabilize. Variability is the basis of natural selection, and the fact that we now see so much variability in the mussels' individual traits means there is potential for natural selection to act."

McCoy first began investigating California mussel shell structure in 2009 when, soon after she began working toward her doctorate, she noticed stark visual differences between older and more recent shells.

"My job was to slice mussels in half and drill out the shell for isotope measurements, and by chance I noticed that older shells looked completely different," she said. "They were twice as thick, massive and took twice as long to cut. Eventually, we found that this was true for other older shells found at various sites throughout the region. It was sort of by accident. We could see the shells were changing, but we weren't exactly sure what was going on."

Now, years after those initial observations, McCoy and her team have found the culprit: global climate change and its destabilizing effects on our oceans.

But according to McCoy, this is no cause for outright pessimism.

"I don't know if this species will succeed in the future, but I have too much confidence in the natural processes of ecology and evolution to think that we'll have barren oceans," she said. "It's true that we might not have as many mussel species, or that their populations might be smaller and have a more restricted range, but I don't think that we'll have an ocean with no mussels."
-end-
Nicholas Kamenos and Peter Chung from the University of Glasgow collaborated on this research, along with Timothy Wootton and Catherine Pfister from the University of Chicago. The study was supported by the Marine Alliance for Science and Technology Scotland and the National Science Foundation. The Makah Cultural and Resource Center provided archived shells.

Florida State University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.