Nav: Home

Astronomers find wandering massive black holes in dwarf galaxies

January 05, 2020

Astronomers seeking to learn about the mechanisms that formed massive black holes in the early history of the Universe have gained important new clues with the discovery of 13 such black holes in dwarf galaxies less than a billion light-years from Earth.

These dwarf galaxies, more than 100 times less massive than our own Milky Way, are among the smallest galaxies known to host massive black holes. The scientists expect that the black holes in these smaller galaxies average about 400,000 times the mass of our Sun.

"We hope that studying them and their galaxies will give us insights into how similar black holes in the early Universe formed and then grew, through galactic mergers over billions of years, producing the supermassive black holes we see in larger galaxies today, with masses of many millions or billions of times that of the Sun," said Amy Reines of Montana State University.

Reines and her colleagues used the National Science Foundation's Karl G. Jansky Very Large Array (VLA) to make the discovery, which they are reporting at the American Astronomical Society's meeting in Honolulu, Hawaii.

Reines and her collaborators used the VLA to discover the first massive black hole in a dwarf starburst galaxy in 2011. That discovery was a surprise to astronomers and spurred a radio search for more.

The scientists started by selecting a sample of galaxies from the NASA-Sloan Atlas, a catalog of galaxies made with visible-light telescopes. They chose galaxies with stars totalling less than 3 billion times the mass of the Sun, about equal to the Large Magellanic Cloud, a small companion of the Milky Way. From this sample, they picked candidates that also appeared in the National Radio Astronomy Observatory's Faint Images of the Radio Sky at Twenty centimeters (FIRST) survey, made between 1993 and 2011.

They then used the VLA to make new and more sensitive, high-resolution images of 111 of the selected galaxies.

"The new VLA observations revealed that 13 of these galaxies have strong evidence for a massive black hole that is actively consuming surrounding material. We were very surprised to find that, in roughly half of those 13 galaxies, the black hole is not at the center of the galaxy, unlike the case in larger galaxies," Reines said

The scientists said this indicates that the galaxies likely have merged with others earlier in their history. This is consistent with computer simulations predicting that roughly half of the massive black holes in dwarf galaxies will be found wandering in the outskirts of their galaxies.

"This work has taught us that we must broaden our searches for massive black holes in dwarf galaxies beyond their centers to get a more complete understanding of the population and learn what mechanisms helped form the first massive black holes in the early Universe," Reines said.

Reines worked with James Condon, of the National Radio Astronomy Observatory; Jeremy Darling, of the University of Colorado, Boulder; and Jenny Greene, of Princeton University. The astronomers are publishing their results in the Astrophysical Journal.
-end-
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

National Radio Astronomy Observatory

Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.