Making therapeutic sense of antisense oligonucleotides

January 05, 2021

Researchers from Tokyo Medical and Dental University (TMDU) and Ionis Pharmaceuticals, USA, report a modification wherein replacing the RNA strand of a heteroduplex oligonucleotide with DNA may enhance the efficacy of antisense oligonucleotide-based drugs

Tokyo, Japan - Antisense oligonucleotides (ASO) hold great promise for pharmacotherapy. Now, researchers at Tokyo Medical and Dental University (TMDU) and Ionis Pharmaceuticals, advancing their earlier work on a heteroduplex oligonucleotide (HDO) model, have demonstrated augmentation of ASO-based drugs by replacing the RNA strand with DNA.

Many drugs work by modifying specific disease-related proteins. Unfortunately, they may also affect non-targeted proteins causing side-effects that downgrade their safety and clinical applicability. Nucleic-acid therapeutics employs an emerging class of drugs including ASOs that target disease at the genetic level by suppressing the expression of pathogenic proteins. By modifying targets hitherto undruggable by conventional pharmacotherapy, they offer potential for treating intractable diseases such as spinal muscular atrophy and Huntington disease, with several candidates in clinical use and more on the horizon.

ASOs are synthetic single-stranded molecules comprising a few dozen base pairs capable of regulating gene expression through binding to the "sense" strand of mRNA targets. Arranging nucleotides, the building blocks of genetic code, in an "antisense" or opposing order can suppress a specific RNA sequence and prevent production of harmful proteins.

The research team had earlier developed an HDO wherein the single-stranded ASO was hybridized to complementary RNA and conjugated with tocopherol. Toc-HDO(coRNA) proved more stable in serum, efficiently deliverable to target cells and more potent than the parent ASO. First author Yutaro Asami explains the rationale of the current study: "Since cellular uptake was mostly in the intact form and the parent ASO was released intracellularly, we proposed replacing the phosphodiester (PO) RNA of the complementary strand with PO DNA that is more stable and easier to manufacture."

The researchers bioengineered a DNA/DNA double-stranded oligonucelotide: Toc-HDO(coDNA). The relatively low DNAse in serum would promote stability and the molecule would be activated intracellularly by DNase degradation. The efficacy of this molecular modification was evaluated using murine hepatocyte uptake assay, quantitative real-time PCR assay for RNA levels and fluorescence-based determination of hepatic ASO concentrations. "We could establish the efficacy of Toc-HDO(coDNA) on mRNA expression levels in comparison with parent ASOs of varied compositions," claims Asami. "Moreover, we also elucidated coDNA strand structure-activity relationships and degradation kinetics in mouse liver cells."

Senior author Professor Takanori Yokota looks into the future. "HDO technology promises personalized targeted therapy for several neurodegenerative and other intractable diseases. Our innovative molecular structural modifications, by enhancing clinical potency and safety, help enlarge the therapeutic toolkit on this versatile platform."
-end-
The article, "Efficient Gene Suppression by DNA/DNA Double-Stranded Oligonucleotide In Vivo" was published in Molecular Therapy at DOI: 10.1016/j.ymthe.2020.10.017

Tokyo Medical and Dental University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.