Impurities boost performance of organic solar cells

January 05, 2021

Sunlight offers a potential solution in the search for an energy source that does not harm the planet, but this depends on finding a way to efficiently turn electromagnetic energy into electricity. Researchers from KAUST have shown how a known herbicide can improve this conversion in organic devices.

While solar cells have traditionally been made from inorganic materials such as silicon, organic materials are starting to break through as an alternative because they are light, flexible and relatively inexpensive to make, even offering the possibility for printable manufacture.

For organic photovoltaics to become a realistic replacement for fossil fuels, they must improve their efficiency when converting the fraction of incident solar energy to electrical energy. Key to achieving this is choosing the right combination of materials.

Ph.D. student Yuanbao Lin and Thomas Anthopoulos have now achieved this by developing "an efficient molecular dopant to improve the performance and stability of organic solar cells," according to Lin.

Most photovoltaic devices have two important elements: an n-type region and a p-region, so called because each region has a net negative and positive electric charge, respectively. These charges can be achieved by adding impurities to the semiconductor. An impurity that creates an n-type material is known as a donor, while an acceptor impurity makes a p-type material.

Lin, Anthopoulos and their team used diquat (C12H12Br2N2) as a molecular donor dopant to enhance the conversion efficiency of high-performance organic solar cells.

The dopant was added to two organic material systems that have previously shown excellent photovoltaic performance. In one case, the power conversion efficiency was improved from 16.7 percent to 17.4 percent, while they were able to attain a maximum efficiency of 18.3 percent in the other. These improvements were possible because the molecular diquat dopant increased both the materials' optical absorption and the lifetime of the electrical charges when light was absorbed.

Like many organic n-type dopants, diquat is reactive in an ambient atmosphere; its lack of stability has prevented its use as a molecular dopant so far. However, the KAUST team were able to develop a process that stably created neutral diquat by electrochemically reducing charged diquat, which is stable in air.

This ability makes diquat a promising choice for the next generation of organic solar cells. "The predicted maximum efficiency of the organic solar cell is around 20 percent," explains Lin. "We will try our best to reach this."

King Abdullah University of Science & Technology (KAUST)

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to