Sweat, bleach and gym air quality

January 05, 2021

One sweaty, huffing, exercising person emits as many chemicals from their body as up to five sedentary people, according to a new University of Colorado Boulder study. And notably, those human emissions, including amino acids from sweat or acetone from breath, chemically combine with bleach cleaners to form new airborne chemicals with unknown impacts to indoor air quality.

"Humans are a large source of indoor emissions," said Zachary Finewax, CIRES research scientist and lead author of the new study out in the current edition of Indoor Air. "And chemicals in indoor air, whether from our bodies or cleaning products, don't just disappear, they linger and travel around spaces like gyms, reacting with other chemicals."

In 2018, the CU Boulder team outfitted a weight room in the Dal Ward Athletic Center--a campus facility for university student athletes, from weightlifters to cheerleaders--with a suite of air-sampling equipment. Instruments collected data from both the weight room and supply air, measuring a slew of airborne chemicals in real time before, during and after workouts of CU athletes. The team found the athletes' bodies produced 3-5 times the emissions while working out, compared to when they were at rest.

"Using our state-of-the-art equipment, this was the first time indoor air analysis in a gym was done with this high level of sophistication. We were able to capture emissions in real time to see exactly how many chemicals the athletes were emitting, and at what rate," said Demetrios Pagonis, postdoctoral researcher at CIRES and co-author on the new work.

Many gym facilities frequently use chlorine bleach-based products to sanitize sweaty equipment. And while these cleaning products work to kill surface bacteria--they also combine with emissions from sweat--mixing to form a new cocktail of chemicals.

The team was the first to observe a chemical group called N-chloraldimines--a reaction product of bleach with amino acids--in gym air. That meant chlorine from bleach cleaner sprayed onto equipment was reacting with the amino acids released from sweating bodies, the authors report.

And although more research is needed to determine specific impacts this might have on indoor air quality, chemically similar reaction products of ammonia with bleach can be harmful to human health.

"Since people spend about 90 percent of our time indoors, it's critical we understand how chemicals behave in the spaces we occupy," said Joost de Gouw, CIRES Fellow, professor of chemistry at CU Boulder and corresponding author on the paper. Although the researchers collected all data for this study pre-pandemic, the team says their results illustrate that a modern gym with low occupancy and good ventilation may still be relatively safe for a workout, especially if masks are used.
-end-
"Quantification and source characterization of volatile organic compounds from exercising and application of chlorine?based cleaning products in a university athletic center" published in Wiley's Indoor Air on December 18, 2020. Authors include: Zachary Finewax (CIRES, CU Boulder Chemistry), Demetrios Pagonis (CIRES, CU Boulder Chemistry), Megan S. Claflin (Aerodyne Research), Anne V. Handschy (CIRES, CU Boulder Chemistry), Wyatt L. Brown (CIRES, CU Boulder Chemistry), Olivia Jenks (CIRES, CU Boulder Chemistry), Benjamin A. Nault (CIRES, CU Boulder Chemistry), Douglas A. Day (CIRES, CU Boulder Chemistry), Brian M. Lerner (Aerodyne Research), Jose L. Jimenez (CIRES, CU Boulder Chemistry), Paul J. Ziemann (CIRES, CU Boulder Chemistry), Joost A. de Gouw (CIRES, CU Boulder Chemistry).

The authors gratefully acknowledge the Sloan Foundation for funding the measurements and instrumentation used in this study, and the CU Boulder Dal Ward Athletic Center for the use of their facilities to collect all data for this work.

University of Colorado at Boulder

Related Amino Acids Articles from Brightsurf:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.

New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.

Read More: Amino Acids News and Amino Acids Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.