Astrophysicists find wide binary stars wreak havoc in planetary systems

January 06, 2013

TORONTO, ON - An international team of astrophysicists has shown that planetary systems with very distant binary stars are particularly susceptible to violent disruptions, more so than if they had stellar companions with tighter orbits around them.

Unlike the Sun, many stars are members of binary star systems - where two stars orbit one another - and these stars' planetary systems can be altered by the gravity of their companion stars. The orbits of very distant or wide stellar companions often become very eccentric - ie. less circular - over time, driving the once-distant star into a plunging orbit that passes very close to the planets once per orbital period. The gravity of this close-passing companion can then wreak havoc on planetary systems, triggering planetary scatterings and even ejections.

"The stellar orbits of wide binaries are very sensitive to disturbances from other passing stars as well as the tidal field of the Milky Way," said Nathan Kaib, lead author of a study published today in Nature describing the findings. "This causes their stellar orbits to constantly change their eccentricity - their degree of circularity. If a wide binary lasts long enough, it will eventually find itself with a very high orbital eccentricity at some point in its life."

When a wide binary orbit becomes very eccentric, the two stars will pass very close together once per orbit on one side of the orbital ellipse, while being very far apart on the other side of the ellipse. This can have dire consequences for planets in these systems since the gravity of a close-passing star can radically change planetary orbits around the other star, causing planets to scatter off of one another and sometimes get ejected to interstellar space.

Kaib, a postdoctoral fellow in the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy at Northwestern University and a National Fellow in the Canadian Institute for Theoretical Astrophysics at the University of Toronto, conducted computer simulations of the process with Queen's University physics professor Martin Duncan and Sean N. Raymond, a researcher at the University of Bordeaux and the Centre national de la recherche scientifique in France. They added a a hypothetical wide binary companion to the Earth's solar system which eventually triggered at least one of four giant planets (Jupiter, Saturn, Uranus and Neptune) to be ejected in almost half of the simulations.

"This process takes hundreds of millions of years if not billions of years to occur in these binaries. Consequently, planets in these systems initially form and evolve as if they orbited an isolated star," said Kaib, who will present the findings this week at the 221st meeting of the American Astronomical Society in Long Beach, California. "It is only much later that they begin to feel the effects of their companion star, which often times leads to disruption of the planetary system."

"We also found that there is substantial evidence that this process occurs regularly in known extrasolar planetary systems," said Duncan. "Planets are believed to form on circular orbits, and they are only thought to attain highly eccentric orbits through powerful and/or violent perturbations. When we looked at the orbital eccentricities of planets that are known to reside in wide binaries, we found that they are statistically more eccentric than planets around isolated stars like our Sun. "

The researchers believe this is a telltale signature of past planetary scattering events, and that those with eccentric orbits are often interpreted to be the survivors of system-wide instabilities.

"The eccentric planetary orbits seen in these systems are essentially scars from past disruptions caused by the companion star," said Raymond.

The researchers note that this observational signature could only be reproduced well when they assumed that the typical planetary system extends from its host star as much as 10 times the distance between the Earth and the Sun. Otherwise, the planetary system is too compact to be affected by even a stellar companion on a very eccentric orbit.

"Recently, planets orbiting at wide distances around their host stars have been directly imaged. Our work predicts that such planets are common but have so far gone largely undetected," says Duncan.
-end-
Note to media: Visit www.artsci.utoronto.ca/main/media-releases/wide-binary-stars-study to view a simulation of the process described here.

MEDIA CONTACTS:

Nathan Kaib
Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University & Canadian Institute for Theoretical Astrophysics, University of Toronto
440-290-9387 (cell)
847-467-3017 (office)
nathan.kaib@northwestern.edu

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

University of Toronto

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.